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Definition 1. A left ideal in a ring R is a subset I Ă R that is an additive subgroup such that for all r P R and
a P I, ra P I. Similarly, a right ideal satisfies ar P I for all r P R and a P I.

Definition 2. A subset S of R is finitely generated as a left R-module if there are elements tx1, . . . , xku of R such

that each s P S can be written s “
řk

i“1 rixi for some ri P R.

Fall 2014 Problem 8. Let A be a ring. Assume there is an infinite chain of left ideals I0 Ă I1 Ă ¨ ¨ ¨ Ă A with
Ii ‰ Ii`1 for i ě 0. Show that A has a left ideal that is not finitely generated as a left A-module.

Define I :“
Ť8

i“0 Ii. We will show that I is a proper ideal. Let a, b P I. Then a P Ik for some k and b P Iℓ for
some ℓ. Without loss of generality, assume k ě ℓ. Then a, b P Ik. Since Ik is an ideal, a ` b P Ik so a ` b P I.
Similarly, let r P A and a P I. Then a P Ik for some k and ra P Ik since Ik is an ideal. Thus ra P I and I is an
ideal of A. If 1 P I, then 1 P Ik for some k. We would have Ik “ Ik`1 “ ¨ ¨ ¨ “ A, a contradiction. Therefore, I is a
proper ideal of A.

Assume for the sake of contradiction that I is finitely generated as a left A-module. Let tx1, . . . , xnu be the
generating set. Each xi P Iki

for some ki. Define k :“ maxni“1 ki, then xi P Ik for all i. This would imply that
Ik “ Ik`1 “ ¨ ¨ ¨ “ A, a contradiction. Thus I is an ideal of A that is not finitely generated as a left A-module.

Definition 3. Let R and S be rings with multiplicative identities 1R and 1S respectively. A ring homomorphism
f : R Ñ S is a function that satisfies:

(1) fp1Rq “ 1S ,

(2) fpa ` bq “ fpaq ` fpbq,

(3) fpabq “ fpaqfpbq.

A ring endomorphism of R is a ring homomorphism f : R Ñ R.

Definition 4. Let R be a commutative ring. A unit r P R is such that there is some s P R for which rs “ 1R.
Note that if ab “ 1R, then fpabq “ fpaqfpbq “ 1S . A ring homomorphism takes units of R to units of S.

Spring 2015 Problem 7. Determine the ring endomorphisms of F2rt, t´1s, where t is an indeterminate.

Let R :“ F2rt, t´1s. For a ring endomorphism f : R Ñ R, we have fp1q “ 1 so f fixes the base field F2.
Let a P Rˆ. We note 1 “ fp1q “ fpaa´1q “ fpaqfpa´1q “ fpa´1qfpaq so f will send units to units with
fpa´1q “ fpaq´1. Each endomorphism of R is thus determined by the image of t since fpt´1q “ fptq´1. Take a
non-zero p P R. Then there is some k P Z such that tkp P F2rts and tkp has a non-zero constant term. If p P Rˆ,
then tkp P Rˆ via ptkpqpp´1t´kq “ 1. If tkp P Rˆ, then the product of two units t´kptkpq “ p is also an element of
Rˆ. Thus tkp is a unit of R if and only if p is a unit of R so it is sufficient to classify pF2rtsqˆ. We show below
that pF2rtsqˆ “ t1u. Thus Rˆ “ ttku for k P Z, and a ring endomorphism f : R Ñ R will always be defined by
fptq “ tk for some k P Z.

Let pptq “ a0 ` ¨ ¨ ¨ ` ant
n P pF2rtsqˆ with an ‰ 0. Then there is some qptq “ b0 ` ¨ ¨ ¨ ` bmtm P F2rts such

that qptqpptq “ 1. Distributing the product, the constant term a0b0 “ 1 so a0, b0 P Fˆ
2 . Looking at the highest

degree term, anbm “ 0 so bm “ 0 since F2 is an integral domain. Then the next largest term in the expansion
yields anbm´1 “ 0 so bm´1 “ 0. We can continue this argument to show that bi “ 0 for all i ě 1. Then
b0pa0 ` ¨ ¨ ¨ ` ant

nq “ 1 implies n “ 0. In F2rts, the set of units is t1u.
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Remark 1. The more general result is f “ a0 ` ¨ ¨ ¨ `ant
n P Rrts is a unit if and only if a0 P Rˆ and ai is nilpotent

for all i ě 1.

Definition 5. An integral domain R is a ring for which ab “ 0 implies a “ 0 or b “ 0 for a, b P R.

Definition 6. A non-zero, non-unit r in an integral domain R is irreducible if it is not a product of two non-units.
Equivalently, every factorization of r contains at least one unit.

Definition 7. A unique factorization domain is an integral domain R for which every non-zero element of R can
be written as a product of irreducible elements and a unit. The factorization is unique up to rearrangement and
multiplication by a unit.

Definition 8. A principal ideal I in a ring R is generated by one element x P R. In other words, every element
a P I satisfies a “ rx for some r P R. We write I “ pxq.

A principal ideal domain is an integral domain R for which each ideal is principal.

Example 1. Every PID is a UFD.

Definition 9. A proper ideal p in a commutative ring R is prime if ab P p implies that a P p or b P p.
An element p P R is prime if the principal ideal ppq is a prime ideal of R.

Example 2. Every prime element of a commutative ring is irreducible. In a UFD, the converse also holds.

Example 3. As an application of Gauss’s Lemma, we can prove that Rrxs is a UFD when R is a UFD.

Spring 2016 Problem 1.

(a) Give an example of a unique factorization domain A that is not a PID. You need not show that A is a UFD
(assuming it is), but please show that your example is not a PID.

Let A :“ Zrxs. We know that A is a UFD via an application of Gauss’s Lemma. Let I :“ p2, xq and we claim
that I is not a principal ideal. We will first show that I is a proper ideal of A. For

1 “ 2a ` bx,

we would need b “ 0. Then there are no possibilities for a since 1 R 2Z. Thus 1 R I and I is a proper ideal.

Assume I “ ppq for some p P A. Then there is an r P A such that rp “ 2. Since Z is an integral domain,
0 “ degprpq “ degprq ` degppq so degppq “ 0. Thus p P Z and the only integer divisors of 2 are ˘1,˘2. Since
I is a proper ideal, p “ ˘2. We note p2q “ p´2q so take p “ 2. Now there is some s P A such that sp “ x.
However, 2s “ x cannot occur. We conclude that I is not principal.

(b) Let R be a UFD. Let p be a prime ideal such that 0 ‰ p and there is no prime ideal strictly between 0 and p.
Show that p is principal.

Let a P p be some nonzero element. Since R is a UFD, we can factor a as a product of irreducible elements
a “

śn
i“1 p

ki

i . In a UFD, irreducible implies prime so each pi is prime in R. Since a P p and p is a prime ideal,
one of the pi P p. Thus ppiq Ă p. Since ppiq is a prime ideal, we must have ppiq “ p and p is principal.

Spring 2019 Problem 3. Let d ą 2 be a square-free integer. Show that the integer 2 in Zr
?

´ds is irreducible
but the ideal (2) in Zr

?
´ds is not a prime ideal.

Define the norm N : Zr
?

´ds Ñ Zě0 as Npa ` b
?

´dq “ pa ` b
?

´dqpa ´ b
?

´dq “ a2 ` b2d. We can show
algebraically that the norm is multiplicative. Further, we will show Npa ` b

?
´dq “ 1 if and only if a ` b

?
´d is a

unit in Zr
?

´1s. (ñ) Assume Npa ` b
?

´dq “ 1. Then pa ` b
?

´dqpa ´ b
?

´dq “ 1 and a ` b
?

´d is a unit. (ð)
Assume a ` b

?
´d is a unit. Then there is some element a1 ` b1

?
´d for which pa ` b

?
´dqpa1 ` b1

?
´dq “ 1. By

multiplicativity of the norm, Npa ` b
?

´dq divides Np1q “ 1. We conclude that Npa ` b
?

´dq “ 1.
We will first show that 2 is irreducible in Zr

?
´ds. Let a`b

?
´d be a non-unit factor of 2. Then Npa`b

?
´dq “

a2 ` b2d divides Np2q “ 4. If Npa ` b
?

´dq “ 1 or Npa ` b
?

´dq “ 4, the factorization of 2 includes a unit. Thus
Npa ` b

?
´dq “ 2 or a2 ` b2d “ 2. Since d ą 2, we must have b “ 0. Then a2 “ 2 for integer a, which is not

possible. No such non-trivial factor of 2 exists.
We will now show that p2q is not prime in Zr

?
´ds. If d is even, 2 divides ´d but 2 does not divide either factor

in ´d “
?

´d ¨
?

´d. If d is odd, 2 divides 1` d but 2 does not divide either factor of 1` d “ p1`
?

´dqp1´
?

´dq.
Thus (2) is not a prime ideal. Note that this argument proves that Zr

?
´ds is not a UFD since irreducible and

prime are equivalent notions in a UFD.
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Definition 10. Let I Ă R be an ideal of a commutative ring R. We define an equivalence relation a „ b if and
only if a ´ b P I. The quotient ring R{I is the set of equivalence classes of R via „ under the operations:

(1) pa ` Iq ` pb ` Iq “ pa ` bq ` I,

(2) pa ` Iqpb ` Iq “ ab ` I.

Lemma (Ideal correspondence). Let R be a ring with ideal I Ă R. Then there is a one-to-one correspondence
between the ideals of R{I and the ideals of R containing I.

Theorem (Hilbert Nullstellensatz). Let F be an algebraically closed field (e.g. C). Then the maximal ideals of
F rx1, . . . , xns are of the form px1 ´ a1, . . . , xn ´ anq for ai P F .

Fall 2019 Problem 3. Let I be the ideal px2 ´ y2 ` z2, pxy ` 1q2 ´ z, z3q of R “ Crx, y, zs. Find the maximal
ideals of R{I, as well as all of the points on the variety

V pIq “ tpa, b, cq P C3 : fpa, b, cq “ 0 for all f P Iu.

By ideal correspondence, the maximal ideals of R{I are in bijection with the ideals of R containing I. Hilbert
Nullstellensatz reveals that the maximal ideals of R are of the form px ´ a, y ´ b, z ´ cq for a, b, c P C. Let m be a
maximal ideal. Since m contains z3, it must contain z. We reduce the other relations to x2 ´ y2 and pxy ` 1q2. If
m contains x2 ´ y2, then it contains either x ´ y or x ` y. If m contains pxy ` 1q2, then it contains xy ` 1. Case 1:
Assume m contains x ´ y. Multiply by ´y to obtain ´xy ` y2 in m. Then y2 ` 1 is in m so either y ` i or y ´ i is
in m. Case 2: Assume m contains x ` y. Then ´xy ´ y2 is in m and so is 1 ´ y2. Thus either y ` 1 or y ´ 1 is in
m. The maximal ideals of R containing I are px ´ 1, y ` 1, zq, px ` 1, y ´ 1, zq, px ´ i, y ´ i, zq, and px ` i, y ` i, zq

which correspond to the points p1,´1, 0q, p´1, 1, 0q, pi, i, 0q, and p´i,´i, 0q in the variety.
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Math 210B Discussion Week 2

Matthew Gherman

January 13, 2022

Spring 2015 Problem 4. Let M “ Z
”

1
p

ı

{Z and N “ Q{Z, where Z
”

1
p

ı

Ă Q is the subring generated by 1
p

for a prime p.

(a) Show that M is an Artinian module but not a Noetherian module.

Let Ik :“
´

1
pk

¯

be Z-submodules of M . If Ik “ Ik`1, then there is some r P Z such that r
pk “ 1

pk`1 .

Equivalently, rpk`1 ´ pk “ pkprp ´ 1q “ 0. Since Z is an integral domain, this cannot occur. We have an
ascending chain I1 Ă I2 Ă . . . that does not terminate so M is not Noetherian.

Let A Ă M be a proper Z-submodule. Then there is a maximum k P N for which a
pk P A for a P Z

and gcdpa, pq “ 1. In this case, gcdpa, pkq “ 1 so there are integers ℓ,m such that ma ` ℓpk “ 1. Then

m a
pk “

1´ℓpk

pk “ 1
pk P A. Thus b

pi P A for all b P Z and i ď k. In other words, A “

´

1
pk

¯

. Take a strict

descending chain A1 Ą A2 Ą . . . of Z-submodules of M . Then A1 “

´

1
pk

¯

for some k P N. Then 1
pj R A2 for

all natural numbers j ě k. Thus A2 “

´

1
pi

¯

for i ă k. Continuing this argument, the descending chain must

terminate. Thus M is Artinian.

(b) Show that N is neither Noetherian nor Artinian.

The counterexample in (a) proves that N is not Noetherian.

Order the prime numbers tpiuiPN. Define Ni as the Z-submodule of N generated by
!

1
pi
, 1
pi`1

, . . .
)

. Since

the pi P Z are prime, 1
pi´1

R Ni for each natural number i ě 2. Then we can construct a descending chain

N1 Ą N2 Ą . . . that does not terminate. We conclude that N is not Artinian.

Fall 2015 Problem 3. Let k be a field and define A “ krX,Y s{pX2, XY, Y 2q.

(a) What are the principal ideals of A?

Let R be a commutative ring. We will prove that the sum of a unit r and a nilpotent element a is a unit. Let
ak “ 0. To show the element r ` a is a unit is equivalent to showing 1 ` r´1a is a unit. Then

p1 ` r´1aq

˜

k´1
ÿ

i“0

p´1qipr´1aqi

¸

“ 1 ` p´1qk´1pr´1aqk “ 1.

We conclude that r ` a is a unit of R.

Take a polynomial with coefficients in k. We can reduce all terms of degree greater than or equal to 2. Thus a
general representative of an element of A is aX ` bY ` c for a, b, c P k. Clearly p0q and p1q “ A are principal
ideals. A non-trivial principal ideal will have some element aX ` bY ` c.

Case 1: Assume c “ 0. Then
paX ` bY q2 “ a2X2 ` 2abXY ` b2Y 2 “ 0

in A so aX ` bY is nilpotent for any choice of a, b P k. Each of paX ` bY q is a principal ideal for a, b P k.

Case 2: Assume c ‰ 0. Since c is a unit and aX ` bY is nilpotent, the element aX ` bY ` c is a unit of A.
Then paX ` bY ` cq “ A.

Thus all principal ideals have one of the following forms tp0q, A, paX`bY qu for a, b P k. We can further simplify
this by breaking into cases a “ 0 and a ‰ 0. If a “ 0, we have paX ` bY q “ pbY q “ Y for b ‰ 0. If a ‰ 0,
then paX ` bY q “ pX ` a´1bY q. All principal ideals have one of the following forms tp0q, pX ` cY q, pY q, Au

for c P k.
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(b) What are the ideals of A?

Let I Ă A be a non-trivial, proper ideal. Then by part (a), I contains some aX ` bY for a, b P k. If
I “ paX ` bY q, then we are in the case of part (a). Assume that paX ` bY q is not all of I. Then there is some
cx ` dY in I that is not in paX ` bY q. If a “ 0, then b´1pbY q “ Y P I. Since cX ` dY was chosen so as not
to be contained in I, we have c ‰ 0. Then c´1ppcX ` dY q ´ dY q “ X P I and pX,Y q Ă I. A similar argument
holds if c “ 0.

Assume that a ‰ 0 and c ‰ 0. The elements X ` a´1bY and X ` c´1dY are contained in I so

pX ` a´1bY q ´ pX ` c´1dY q “ pa´1b ´ c´1dqY

is an element of I. Since cX `dY was chosen to not be in paX ` bY q, we conclude that a´1b´ c´1d ‰ 0. Then
multiplying by its inverse in k, we obtain Y P I. Further, X P I and pX,Y q Ă I.

Since A{pX,Y q » k is a field, we conclude that pX,Y q is a maximal ideal. Thus I proper implies I “ pX,Y q

in the above cases. We conclude that the ideals of A are tp0q, pX ` cY q, pY q, pX,Y q, Au for c P k.

Fall 2020 Problem 8. Consider R “ CrX,Y s{pX2, XY q. Determine the prime ideals P of R.

By the prime ideal correspondence, the prime ideals of R are in bijection with the prime ideals of CrX,Y s that
contain pX2, XY q. Let p be a prime ideal of CrX,Y s that contains pX2, XY q. Then X2 P p and p prime implies
pXq Ă p. The quotient CrX,Y s{p factors through CrY s{p1 for some prime ideal p1 of CrY s. Since CrY s is a PID,
we conclude that p1 “ pppY qq for an irreducible polynomial ppY q P CrY s. Thus p “ pXq or p “ pX, ppY qq. The
collection tpXq, pX, ppY qqu is all the prime ideals of R for ppY q irreducible in CrY s.

Spring 2016 Problem 3. Let R be a ring which is left Artinian (that is, Artinian with respect to left ideals).
Suppose that R is a domain, meaning that 1 ‰ 0 in R and ab “ 0 implies a “ 0 or b “ 0 in R. Show that R is a
division ring.

Let the ring homomorphism f : R Ñ R be right multiplication by some nonzero a P R. Then fpbq “ 0 implies
ba “ 0 so a “ 0 or b “ 0 by R a domain. Since a ‰ 0, we have b “ 0 and f is injective. Note that this further
implies that fk is injective for all k P N. We have the chain of decreasing left R-modules,

impfq Ą impf2q Ą . . .

Since R is Artinian, the chain terminates so impfkq “ impfk`1q for some k P N. Let b P R be any element. Then
fkpbq P impfkq so there is some c P R such that fk`1pcq “ fkpbq. Rearranging, fkpfpcq ´ bq “ 0 and fpcq “ b by
injectivity of fk. We conclude that f is surjective. Then fpbq “ 1 for some b P R which implies ba “ 1. We have
shown that every nonzero element a P R has a left inverse b. Further, b has a left inverse, which we denote c P R.
Then

a “ pcbqa “ cpbaq “ c

and every nonzero a P R is invertible. We conclude R is a division ring.

Definition. We say that B is finitely generated as an A-algebra if each element b P B can be written as a polynomial
of elements tx1, . . . , xku Ă B with coefficients in A.

Proposition. Let B be a finitely generated A-algebra. If A is Noetherian, then B is Noetherian.

Proof. Let tx1, . . . , xku generate B as an A-algebra. Then there is a surjective ring homomorphism

φ : Arx1, . . . , xns Ñ B.

Thus B is isomorphic to a quotient of Arx1, . . . , xns, a Noetherian ring by Hilbert Basis Theorem. We conclude
that B is Noetherian as a ring.

Fall 2017 Problem 4. Let R be a commutative Noetherian ring and A a finitely generated R-algebra (not
necessarily commutative). Let B be an R-subalgebra of the center ZpAq. Assume A is a finitely generated B-
module. Show that B is a finitely generated R-algebra.
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Let tx1, . . . , xmu generate A as a C-algebra and ty1, . . . , ynu generated A as a B-module. Then xi “
řn

j“1 bijyj
and yiyj “

řn
k“1 bijkyk for some bij , bijk P B. Let B0 be the R-algebra generated by the set tbij , bijku. Since R

is Noetherian and B0 is finitely generated as an R-algebra, B0 is Noetherian as a ring. Every element of C is a
polynomial in the xi, which we can write in terms of the yj . Then B Ă ZpAq and yiyj “

řn
k“1 bijkyk allow us

to reduce this expression to a linear combination of the yj with coefficients in B0. Thus A is a finitely generated
B0-module, which implies A is a Noetherian B0-module. Initially, B is an R-subalgebra of A and B0 Ă B so B has
the structure of a B0-submodule of A. Thus B is finitely generated as a B0-module and B0 is finitely generated as
an R-algebra so B is finitely generated as an R-algebra.

This proof is based on that of Proposition 7.8 in Atiyah MacDonald.
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Spring 2017 Problem 5. Let S be a multiplicatively closed subset of a commutative ring R. For a prime
ideal I in R with I X S “ H, show that the ideal I ¨ S´1R in the localized ring S´1R is prime. Also, show that
sending I to I ¨ S´1R gives a bijection between the prime ideals in R that do not meet S and the prime ideals in
the localized ring S´1R.

We will first prove that the ideals of S´1R are in one-to-one correspondence with the ideals of R that are disjoint
from S. Let I Ă R be an ideal. Since I is a proper ideal R, S´1I “ S´1R implies I contains some element of S.
Thus S´1I is a proper subset of S´1R when I X S “ H. For a

s ,
b
t P S´1I, we have ta`sb

st P S´1I since ta ` sb P I
and st P S. For r

t P S´1R and a
s P S´1R, we have ra

st P S´1I since ra P I and st P S. Given an ideal J Ă S´1R,
define I :“ ta P R : a

1 P Ju. If a
s P J , then s

1
a
s “ a

1 P J so I is the set of all numerators of J . If J Ă S´1R
is a proper ideal, then 1

1 R J so 1 R I and I is a proper subset of R. Now ra P I for all a P I and r P R since
r
1
a
1 “ ra

1 P J . For a, b P I we have a
1 ` b

1 “ a`b
1 P J so a ` b P I. We conclude that I Ă R is a proper ideal.

We want to show further that a prime ideal of R maps to a prime ideal of S´1R for S a multiplicatively closed
subset of Rzt0u with 1 P S under this correspondence. Let p Ă R be a prime ideal with a

s
b
t “ ab

st P S´1p. Then

ab P p so a P p or b P p since p is prime. Thus a
s P S´1p or b

t P S´1p and S´1p is a prime ideal of S´1R. Given a

prime ideal q Ă S´1R, define the corresponding ideal p “ ta P R : a
1 P qu. If ab P p, then ab

1 P q so a
1 or b

1 is in q.
We conclude that a or b is in p.

Spring 2016 Problem 4(a). Let A be a commutative ring, S a multiplicatively closed subset of A, A Ñ S´1A
the localization. Which elements of A map to zero in S´1A?

An element a P A maps to a
1 P S´1A. If a

1 “ 0, then there is some s P S such that sa “ 0. Let Sa “ tsa : s P Su

and 0 P Sa when a maps to 0. Conversely, an element a P A such that 0 P Sa maps to zero in the localization. If
S contains some zero divisor of A, then it will send some non-trivial element of A to zero in S´1A.

Fall 2015 Problem 2. Let R be a principal ideal domain with field of fractions K.

(a) Let S be a non-empty multiplicatively closed subset of Rzt0u. Show that S´1R is a principal ideal domain.

Let J Ă S´1R be an ideal. Then the ideal I Ă R of all numerators of J is principal. Let I “ paq for a P R.
Then we claim that J “

`

a
1

˘

. Certainly J Ą
`

a
1

˘

. Let j
s P J . Then j “ ra for some r P R and r

s
a
1 “ ra

s “
j
s .

We conclude J “
`

a
1

˘

and S´1R is a principal ideal domain.

(b) Show that any subring of K containing R is S´1R for some multiplicatively closed subset S of Rzt0u.

Let R Ă T Ă K be a subring. Define S :“ ts P Rzt0u : 1
s P T u. Since 1

1 P T we have 1 P S. Given s, t P S, we
have 1

s
1
t “ 1

st P T so st P S. Thus S is a multiplicatively closed subset of R and T Ą S´1R. Let a
s P T and

we want to show a
s P S´1R. We can assume gcdpa, sq “ 1 since R is a UFD. In the PID R, Bezout’s identity

implies there are elements k, ℓ P R such that ka ` ℓs “ 1. Thus k
1
a
s ` s

s
ℓ
1 “ ka`ℓs

s “ 1
s P T so a

s P S´1R. We
conclude T “ S´1R for a multiplicatively closed set S of Rzt0u.

Proposition. Let R be a ring and S a multiplicatively closed subset of R that does not contain 0. Let I be an

ideal of R. Then S´1R{S´1I is isomorphic to S
´1

pR{Iq where S is the image of S in R{I.

Proof. Let T “ S´1R{S´1I. Then define a ring homomorphism g : R Ñ S´1R Ñ T so that gprq is the class of
r
1 in T . The kernel of g is I so g descends to a ring homomorphism g : R{I Ñ T . Further, the elements S map

to units in T . By the universal property of localization, there is a unique homomorphism h : S
´1

pR{Iq Ñ T such

that g “ h ˝ f for f : R{I Ñ S
´1

pR{Iq the usual inclusion. One can check that h is an isomorphism.
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Fall 2020 Problem 8. Consider R “ CrX,Y s{pX2, XY q. Determine the prime ideals P of R. Which of the
localizations RP are integral domains?

By the prime ideal correspondence, the prime ideals of R are in bijection with the prime ideals of CrX,Y s that
contain pX2, XY q. Let p be a prime ideal of CrX,Y s that contains pX2, XY q. Then X2 P p and p prime implies
pXq Ă p. The quotient CrX,Y s{p factors through CrY s{p1 for some prime ideal p1 of CrY s. Since CrY s is a PID,
we conclude that p1 “ pppY qq for an irreducible polynomial ppY q P CrY s. Thus p “ pXq or p “ pX, ppY qq. The
collection tpXq, pX, ppY qqu is all the prime ideals of R for ppY q irreducible in CrY s.

Let I “ pX2, XY q be an ideal of CrX,Y s. Since localization commutes with quotients, the ring Rp for a prime
ideal p in R is isomorphic to S´1CrX,Y s{S´1I for a multiplicatively closed set S Ă CrX,Y s for which the image
of S in R is Rzp. Assume Y R p. Then Y is invertible in Rp. We conclude that S´1I “ S´1pX2, XY q “ pXq in
CrX,Y s. Then S´1CrX,Y s{S´1I is isomorphic to a localization of the integral domain CrY s so Rp is an integral
domain. If Y P p, then p “ pX,Y q. The localization at the prime ideal p will not be an integral domain since X is
nilpotent.

Definition. The nilradical of a commutative ring R is the ideal of R containing all nilpotent elements of R.
Equivalently, the nilradical is the intersection of all prime ideals of R. There are analogues of the nilradical for
non-commutative rings, but the situation is more complicated.

Definition. The Jacobson radical is the set of all r P R such that rM “ 0 for all simple R-modules M . One can
show that the Jacobson radical is a two-sided ideal. The Jacobson radical of a commutative ring R is equivalently
the intersection of all maximal ideals of the ring R.

Fall 2015 Problem 9(b). Let R be a ring. Is an element in the Jacobson radical of R always nilpotent? Is a
nilpotent element of R always in the Jacobson radical? Justify your answers.

An element of the Jacobson radical is not always nilpotent. In commutative rings, the nilradical, the set of all
nilpotent elements, is the intersection of all prime ideals of the ring. The Jacobson radical is the intersection of all
maximal ideals of R. The ring Zrxs has maximal ideal p2, xq. Let R “ Zrxsp2,xq be the localization of Zrxs with
S “ Zrxszp2, xq. Then R is local with JpRq “ S´1p2, xq. Note Zrxs{p2q » pZ{2Zqrxs, which is an integral domain.
Thus p2q is a prime ideal of Zrxs. Similarly, Zrxs{pxq » Z is an integral domain and pxq is a prime ideal of Zrxs. By
the argument above, S´1p2q and S´1pxq are prime ideals of R. We see that S´1p2q X S´1pxq is strictly contained
in the Jacobson radical S´1p2, xq. Take for instance 2`x

1 P JpRq but 2`x
1 is not nilpotent.

A nilpotent element is not always in the Jacobson radical of a ringR. LetR “ M2pCq and A :“

ˆ

0 1
0 0

˙

P M2pCq.

It is clear that A2 is the zero matrix so A is nilpotent. The matrix ring R has no non-trivial two-sided ideals so A
is a nilpotent element that is not in the Jacobson radical of R.

Spring 2019 Problem 9(a) Find a domain R and two nonzero elements a, b P R such that R is equal to the
intersection of the localizations Rr1{as and Rr1{bs (in the quotient field of R) and aR ` bR ‰ R.

Let R “ Zrxs with a “ 2 and b “ x. Then p2, xq is a proper ideal of R so 2R ` xR ‰ R. We want to show that
R “ Rr1{2s X Rr1{xs in the quotient field. Let r

s be in the intersection. Then r
s “ c

2k
“ d

xℓ where we can assume

without loss of generality that the fractions are reduced. We have spcxℓ ´ d2kq “ 0 in R which only has non-trivial
solutions when k “ ℓ “ 0 since R is an integral domain. Thus R “ Rr1{2s X Rr1{xs as desired.

Spring 2020 Problem 3. Prove that a noetherian commutative ring A is a finite ring if the following two
conditions are satisfied:

(a) the nilradical of A vanishes,

(b) localization at every maximal ideal is a finite ring.

Let p be a prime ideal of A. Let m be a maximal ideal of A for which p Ă m. We note that A{p and
the localization of A{p at m{p are integral domains. The localization pA{pqm{p is isomorphic to Am{pm so, by
assumption (b), pA{pqm{p is finite. A finite integral domain is a field so pm is a maximal ideal of Am. Since Am is
a local ring with unique maximal ideal m, we conclude that p “ m and every prime ideal of A is maximal. Since A

2



is Noetherian, A will have finitely many minimal prime ideals. Each maximal ideal in A is also minimal so there
are finitely many maximal ideals of A.

Let n be the nilradical or the intersection of all prime ideals of A. By the above argument, n is equivalently the
intersection of all maximal ideals of A. In general, we can define a ring homomorphism f from A to

ś

iPI A{mi by
fpaq “ pa`miqiPI for tmiuiPI the collection of all maximal ideals of A. The kernel of f is n so assumption (a) implies
f is injective. In our case, we can use Chinese Remainder Theorem to prove that the map is an isomorphism. Each
component A{mi is finite since pA{miqmi{mi

» Ami
{pmiqmi

is isomorphic to A{mi. There are finitely many maximal
ideals mi so the codomain of f is finite. Thus A is finite.
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Math 210B Discussion Week 4

Matthew Gherman

January 27, 2022

Proposition. Let R be a left Artinian ring. Then any injective R-module homomorphism is surjective.

Proof. Let f : M Ñ N be an injective homomorphism of left R-modules. We can construct the descending
chain impfq Ą impf2q Ą . . . of left R-modules. (Note that each impf iq is finitely generated because they are
submodules of a finitely generated module over a left Noetherian ring R.) Then the descending chain terminates
and impfkq “ impfk`1q for some k. Take b P R. Then fkpbq P impfkq “ impfk`1q so there is some c P R such that
fk`1pcq “ fkpbq. Then fkpb´ fpcqq “ 0 and fk injective implies b “ fpcq. Thus f is surjective.

Spring 2015 Problem 3. Let R be a ring. Show that R is a division ring if and only if all R-modules are free.

(ñ) Assume that R is a division ring and let M be a left R-module. Let S be the set of all possible linearly
independent sets ofM ordered by inclusion. The set S is not empty since the empty set is linearly independent. Let
txiuiPI0 Ă txiuiPI1 Ă . . . be an increasing chain of elements of S. Then X :“

Ť8

j“1txiuiPIj is a linearly independent
set ofM since any linear dependence occurs with the elements from some Ij . By Zorn’s Lemma, there is a maximal
element txiuiPI of S. If txiuiPI is a generating set, we are done.

Let x P M . Then txiuiPI Y txu is a linearly dependent set by maximality. For x “ xi0 , we have

k
ÿ

j“1

rixij “ 0

for all ri ‰ 0. Since R is a division ring,

x “ ´r´1
0

˜

k
ÿ

j“0

rixij

¸

.

Thus x is in the span of txiuiPI and txiuiPI is a generating set of M . We conclude that all left R-modules are free.
We make the same argument for right R-modules.

(ð) Assume that all R-modules are free. Thus all R-modules are projective and R is semisimple. Then R is
left Artinian. Right multiplication f : R Ñ R by some a P R is a left R-module homomorphism. Since Ra is free
as a left R-module, f is an injective R-module homomorphism. By Proposition, f is a surjective left R-module
homomorphism. There is some b P R such that fpbq “ ba “ 1. We conclude that every element a P R has a left
inverse. Let c be the left inverse of b. Then c “ cpbaq “ pcbqa “ a and each element of R has an inverse. We
conclude R is a division ring.

Lemma (Nakayama’s Lemma). Let R be a commutative ring with identity. Let I be an ideal of R and M a
finitely-generated R-module. If IM “ M , then there exists some r ” 1 (mod I) such that rM “ 0.

Corollary. Let R be a commutative ring with identity. Let M is a finitely-generated R-module with JpRq the
Jacobson radical of R. If JpRqM “ M , then M “ 0.

Proof. Nakayama’s Lemma implies that r ´ 1 is in the Jacobson radical. Thus r is invertible.

Spring 2019 Problem 4. Let R be a commutative local ring and P a finitely generated projective R-module.
Prove that P is R-free.

1



Let txiu
k
i“1 be a minimal set of generators for P as an R-module. Then we have a surjection f : Rk Ñ P and

the short exact sequence
0 Ñ kerpfq Ñ Rk Ñ P Ñ 0.

Since P is projective, the short exact sequence splits and Rk » P ‘ kerpfq. Let N “ kerpfq. We will show that N
is trivial.

Let m be the unique maximal ideal of R. Then M{mM is a vector space over R{m of the same dimension as
pR{mqk. Thus M{mM » pR{mqk as R{m-vector spaces and N “ mN . Since R is a commutative local ring, the
Jacobson radical JpRq “ m. By the second version of Nakayama’s Lemma, N “ 0 as desired.

Spring 2020 Problem 10. Let R be a commutative ring and M a left R-module. Let f : M Ñ M be a
surjective R-linear endomorphism. [Hint: Let RrXs act on M via f .]

(a) Suppose that M is finitely generated. Show that f is an isomorphism and that f´1 can be described as a
polynomial in f .

Let RrXs act on M via X ¨ m “ fpmq and extend linearly. Let I “ pXq Ă RrXs. Then f surjective gives
M “ IM . Nakayama’s Lemma provides some r P RrXs for which r ” 1 (mod pXq) and rM “ 0. In other
words, r “ 1 ´XppXq for ppXq P RrXs and

r ¨m “ 0

p1 ´XppXqq ¨m “ 0

m “ XppXq ¨m.

We conclude that ppfq is the inverse of f .

(b) Show that this fails if M is not finitely generated.

Let M be the free module of countably many copies of R. Define f :M Ñ M as

fpr1, r2 . . . , rk, . . . q “ pr2, . . . , rk, . . . q.

Then f is surjective with kernel isomorphic to R.

Spring 2018 Problem 9. Let f : M Ñ N and g : N Ñ M be two R-linear homomorphisms of R-modules
such that idM ´ gf is invertible. Show that idN ´ fg is invertible as well and give a formula for its inverse. [Hint:
You may use Analysis to make a guess.]

Since idM´gf :M Ñ M is invertible, there is someR-module homomorphism c :M Ñ M such that cpidM´gfq “

idM “ pidM ´ gfqc. Note that cgf “ c ´ idM and gfc “ c ´ idM . We claim the R-module homomorphism
idN ` fcg : N Ñ N is the inverse of idN ´ fg : N Ñ N .

pidN ` fcgqpidN ´ fgq “ idN ´ fg ` fcg ´ fpcgfqg

“ idN ´ fg ` fcg ´ fpc´ idM qg

“ idN ´ fg ` fcg ´ fcg ` fg

“ idN

pidN ´ fgqpidN ` fcgq “ idN ` fcg ´ fg ´ fpgfcqg

“ idN ` fcg ´ fg ´ fpc´ idM qg

“ idN ` fcg ´ fg ´ fcg ` g

“ idN .

Fall 2014 Problem 9. Let A be a ring and let i, j P A such that i2 “ i and j2 “ j. Show that the left
A-modules Ai and Aj are isomorphic if and only if there are a, b P A such that i “ ab and j “ ba.
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(ñ) Assume Ai and Aj are isomorphic. Let ϕ : Ai Ñ Aj be such an isomorphism with inverse ψ : Aj Ñ Ai. Then
ϕpiq “ cj and ψpjq “ di for some c, d P A. Note that ϕpiq “ ϕpi2q “ iϕpiq “ icj and ψpjq “ ψpj2q “ jψpjq “ jdi.
Let a :“ icj and b :“ jdi. Then

ab “ picjqpjdiq “ icjdi “ icψpjq “ ψpicjq “ ψpϕpiqq “ i

ba “ pjdiqpicjq “ jdicj “ jdϕpiq “ ϕpjdiq “ ϕpψpjqq “ j

as desired.
(ð) Assume i “ ab and j “ ba for some a, b P A. Then we can define a left A-module homomorphism

ϕ : Ai Ñ Aj by ϕpiq “ ia “ aj. Extend ϕ A-linearly. We can also define an A-module homomorphism ψ : Aj Ñ Ai
by extending ψpjq “ jb “ bi A-linearly. Let r P A. Then

ψpϕpriqq “ ψprϕpiqq “ ψpriaq “ ψprajq “ raψpjq “ rajb “ rabi “ ri2 “ ri

ϕpψprjqq “ ϕprψpjqq “ ϕprjbq “ ϕprbiq “ rbϕpiq “ rbia “ rbaj “ rj2 “ rj.

We conclude that ϕ is an isomorphism.

Fall 2020 Problem 4. Let M be a left R-module. Show that M is a projective R-module if and only if there
exist mi P M and R-homomorphisms fi : M Ñ R for each i P I such that the sets tmi : i P Iu and tfi : i P Iu

satisfy:

(a) If m P M , then fipmq “ 0 for all but finitely many i P I.

(b) If m P M , then m “
ř

iPI fipmqmi.

(ñ) AssumeM is projective. ThenM is a direct summand of a free R-module. There is a surjection g : R|I| Ñ M .
Define mi as gpeiq for peiqiPI the standard basis of R|I|. Further, define fi as the composition of the inclusion of
M into R|I| and the projection onto the ith component.

(ð) The set tmi : i P Iu is a generating set of M . There is a surjection g : R|I| Ñ M given by gpriq “ rimi

where ri is an element of the ith component of R|I|. Define a splitting f : M Ñ R|I| as fpmq “ pfipmqqi. Then
fpgpmqq “

ř

iPI fipmqmi “ m by assumption (b). SinceM is a direct summand of a free R-module,M is projective.
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Math 210B Discussion Week 5

Matthew Gherman

February 3, 2022

Definition 1. Let F be a field. A field extension E of F is a field for which F Ă E. We can view E as a vector
space over F and the degree of E over F is rE : F s “ dimF pEq. A finite field extension is one in which the degree
is finite.

Definition 2. An algebraic field extension E of F is one for which any element a P E is the root of some polynomial
in F rxs. A field extension that is not algebraic is called transcendental.

Proposition. If E{F is a finite field extension, then it is algebraic.

Proposition. Let E{L{F be a tower of finite field extensions. Then rE : F s “ rE : LsrL : F s.

Definition 3. Let K and L be two algebraic field extensions of F . Then the product KL is defined as the smallest
field extension of F containing both K and L.

Proposition. Let K and L be two finite field extensions of F . If rK : F s and rL : F s are relatively prime and
K X L “ F , then rKL : F s “ rK : F srL : F s.

Definition 4. Let E{F be an algebraic field extension. For some α P E, the minimal polynomial of α is the unique
monic irreducible polynomial p P F rxs of lowest degree for which α is a root.

Definition 5. Let E be a field. Then a non-constant f P Erxs splits if it factors into linear terms.
Let E be a field extension of F . We say that E is the splitting field of some f P F rXs if f splits in Erxs and

E “ F rα1, . . . , αns for tαiu the roots of f . A field extension E{F is normal if E is the splitting field of some
polynomial f P F rxs.

We say that f is separable if the linear factors of f in a splitting field are distinct. A separable field extension
E{F is one in which the minimal polynomial of each element α P E is separable.

Proposition. If F has charpF q “ 0 or F is finite, then every algebraic field extension of F is separable.

Definition 6. A Galois extension of F is the splitting field E of a separable polynomial f P F rxs. In other words,
the extension is normal and separable. The Galois group GalpE{F q is the group of field automorphisms of E that
fix all elements of F .

Proposition. If E{F is a finite Galois extension, then |GalpE{F q| “ rE : F s.

Theorem (Galois correspondence). Let E{F be a Galois extension. Let H be a subgroup of GalpE{F q. Define
EH to be the elements of E fixed by all automorphisms of H. There is a one-to-one correspondence between
subgroups of GalpE{F q and intermediate fields E{L{F via H ÞÑ EH . The correspondence is inclusion reversing
and |H| “ rE : EH s. Finally, EH is a normal extension of F if and only if H is a normal subgroup of GalpE{F q.

Fall 2014 Problem 3. Pick a non-zero rational number x. Determine all possibilities for the Galois group G
of the normal closure of Qr 4

?
xs over Q, where 4

?
x is the root of X4 ´ x with maximal degree over Q.

Note that charpQq “ 0 so all finite extensions of Q are separable.
Case 1: Assume x “ y4 for some y P Q, then the roots of X4 ´ x are t˘y,˘yiu. A root of maximal degree is

yi, and Qryis “ Qris is the splitting field of the irreducible polynomial X2 ` 1 over Q. Thus Qris{Q is a Galois
extension of degree 2. The only group of order 2 is Z{2Z so

GalpQris{Qq » Z{2Z.

1



Case 2: Assume x “ y2 for some y P Q and x ‰ z4 for all z P Q. Then the roots of X4 ´ x are t˘
?
y,˘

?
yiu

for
?
y P R and X4 ´ x “ pX2 ´ yqpX2 ` yq. The two polynomials X2 ´ y and X2 ` y are irreducible over Q since

they do not have roots over Q. Thus all of the roots have degree 2 so we can take 4
?
x “

?
y. Then Qr

?
ys is the

splitting field of X2 ´ y over Q and Qr
?
ys{Q is Galois. Once again, the Galois group is order 2 so

GalpQr
?
ys{Qq » Z{2Z.

Case 3: Assume x “ ´y2 for some y P Q and x ‰ z4 for all z P Q. Then the roots of X4 ´ x are t
?
yξj8u for ξ8

a primitive eighth root of unity and j “ 1, 3, 5, 7. Note that ξ8 “
?
2
2 ` i

?
2
2 . These roots are not rational so X4 ´x

can only factor as a product of quadratics.
If 2y is the square of a rational number, then

pX ´
?
yξ8qpX ´

?
yξ78q “ X2 ´

a

2yX ` y

pX ´
?
yξ38qpX ´

?
yξ58q “ X2 ´

a

2yX ` y

The normal closure K is a degree 2 extension of Q and

GalpK{Qq » Z{2Z.

In all other cases, none of the possible pairings of roots yields a quadratic with coefficients in Q. Thus X4 ´ x
is irreducible and the normal closure K is the splitting field of X4 ´ x. It is clear that K Ă Qr

?
2y, is. Continuing,

4
?
xξ8 “

?
2y
2 `

?
2y
2 i. We see that 2 4

?
xξ8 ` 4

?
xξ8 “

?
2y P K. Then 2

y p
?
2y 4

?
xξ8 ´

y
2 q “ i P K as well. We conclude

K “ Qr
?
2y, is. Note the polynomials X2 ´ 2y and X2 ` 1 are irreducible so Qr

?
2ys{Q and Qris{Q are degree 2

Galois extensions with Qr
?
2ys X Qris “ Q since Qr

?
2ys Ă R. Then

GalpK{Qq » GalpQr
a

2ys{Qq ˆ GalpQris{Qq » Z{2Z ˆ Z{2Z.

Case 4: Assume x ‰ y2 for all y P Q and x ą 0. The roots are t˘ 4
?
x,˘ 4

?
xiu where we take 4

?
x to be the

real fourth root of x. By assumption, X4 ´ x has no roots in Q. None of the possible pairings of px ´ αq for α a
root of X4 ´ x gives a quadratic with coefficients in Q. Thus X4 ´ x is irreducible and all the roots have degree
4, justifying the choice of 4

?
x as the real fourth root. Let K be the normal closure of Qr 4

?
xs{Q. Since X4 ´ x is

irreducible, K will be the splitting field of X4 ´ x. We note that K Ă Qr 4
?
x, is since X4 ´ x splits in Qr 4

?
x, is.

Additionally, 4
?
x P K and 1

x p 4
?
xq3p 4

?
xiq “ i P K so K “ Qr 4

?
x, is.

We build the tower of field extensions below. We know that rQr 4
?
xs : Qs “ 4 and rQris : Qs “ 2. Since

Qr 4
?
xs Ă R, we have Qr 4

?
xs X Qris “ Q and rQr 4

?
x, is : Qs “ 8, as a result. Note that Qr 4

?
xs{Q is not a normal

extension so Qr 4
?
x, is{Q is not an abelian extension. Thus GalpQr 4

?
x, is{Qq is a non-abelian group of order 8. This

leaves the quaternion group or the dihedral group.

Qr 4
?
x, is

Qr 4
?
xs

Qris

Q

Complex conjugation τ is an order 2 automorphism. In both D4 and Q8, there is an element of order 4. Let
σ P GalpK{Qq be such an element. If σp 4

?
xq “ ´ 4

?
x, then σp 4

?
xiq “ 4

?
xi or σp 4

?
xiq “ ´ 4

?
xi. In either case,

σ2 is the identity, a contradiction. Thus σp 4
?
xq “ ˘ 4

?
xi. The argument will work for either choice so assume

σp 4
?
xq “ 4

?
xi. We see that στp 4

?
xq “ σp 4

?
xq “ 4

?
xi and τσp 4

?
xq “ τp 4

?
xiq “ ´ 4

?
xi. Thus σ and τ do not

commute. The order 2 element ´1 in the quaternion group commutes with the order 4 elements. We conclude

GalpQr 4
?
x, is{Qq » D4.

Case 5: Assume x ‰ y2 for all y P Q and x ă 0. Let z “ |x|. Then the roots of X4 ´ x are t 4
?
zξi8u for 4

?
z

the real fourth root and i P t1, 3, 5, 7u. The roots are not contained in Q and none of the possible pairings of roots
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yields a quadratic with coefficients in Q. Thus X4 ´ x is irreducible and the normal closure K is the splitting field

of X4 ´ x. It is clear that K Ă Qr
4
?
4z, is since 4

?
zξ8 “ 4

?
zp

?
2
2 `

?
2
2 iq. But, 4

?
zξ8 ` 4

?
zξ78 “ 4

?
z

?
2 “

4
?
4z P K

and 4
?
zξ38 ` 4

?
zξ58 “ 4

?
z

?
2i “

4
?
4zi P K. Then p 1

4z qp
4
?
4zq3p

4
?
4ziq “ i P K. We conclude that K “ Qr

4
?
4z, is.

This is Case 4 since 4z P Q so
GalpK{Qq » D4.
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Dedekind Domains

Matthew Gherman

February 3, 2022

Definition 1. The following are equivalent definitions of a Dedekind domain.

(a) A Dedekind domain is an integral domain in which each non-zero proper ideal factors into a product of prime
ideals. This factorization can be shown to be unique up to reordering of the factors.

(b) A Dedekind domain is an integrally closed, Noetherian domain in which each prime ideal is maximal.

(c) A Dedekind domain is Noetherian and the localization at each maximal ideal is a DVR.

Proposition. A Dedekind domain is a PID if and only if it is a UFD.

Proof. We need only prove that every ideal in a Dedekind domain R with unique factorization is principal. Further,
unique factorization of prime ideals means it is sufficient to prove each prime ideal is principal. Let p be a non-zero
prime ideal of R with a P p. Let a “ p1 ¨ ¨ ¨ pk be a unique factorization of a into prime elements of R. Then
p divides paq “ pp1q ¨ ¨ ¨ ppkq so p contains some prime ideal ppiq. Since R has dimension one, p “ ppiq and p is
principal.

Example 1. The ring R “ Rrx, ys{px2 ` y2 ´ 1q is a Dedekind domain that is not a PID and, thus, not a UFD.

Definition 2. Let R be an integral domain and K its field of fractions. A fractional ideal is an R-submodule of
K for which there is some r P R such that rI Ă R. We think of r as clearing denominators in I.

Definition 3. A fractional ideal I of R is invertible if there is another fractional ideal J of R for which IJ “ R.

Definition 4. A Dedekind domain is, equivalently, an integral domain for which each fractional ideal is invertible.
The inverse of a fractional ideal I is given by tx P K : xI Ă Ru.

Spring 2017 Problem 4. Show that the ring R “ Crx, ys{py2´x3`1q is a Dedekind domain. (Hint: Compare
R with the subring Crxs.)

The ring R is a quotient of the Noetherian ring Crx, ys so R is Noetherian. The polynomial y2´x3`1 would have
to factor in Crx, ys as a product of two degree one polynomials in y. By inspection, the polynomial is irreducible
in Crx, ys. Thus py2 ´ x3 ` 1q is a prime ideal in Crx, ys so R is an integral domain. Further, Crx, ys has Krull
dimension two so, by the prime ideal correspondence, R has Krull dimension one.

It is thus sufficient to show that R is the integral closure of the subring Crxs in the fraction field of R, which
is K “ Cpxqrys{py2 ´ px3 ´ 1qq. Let α P Cpxqrys{py2 ´ px3 ´ 1qq be integral over Crxs. The set t1, yu is a basis
for Cpxqrys{py2 ´ px3 ´ 1qq as a Cpxq-vector space. Thus α “ p ` qy for p, q P Cpxq. If q “ 0, α P Crxs Ă R so
we may assume q ‰ 0. Let m “ T 2 ´ 2pT ` pp2 ` q2px3 ´ 1qq P CpxqrT s be the minimal polynomial of α over
Cpxq. Since Crxs is a UFD, Gauss’s Lemma implies that m P CrxsrT s. Then 2p P Crxs gives p P Crxs. Since
p2 ` q2px3 ´1q P Crxs, we have q2px3 ´1q P Crxs. From x3 ´1 square-free in Crxs, we conclude q P Crxs and α P R.
Therefore, R is the integral closure of Crxs in Cpxqrys{py2 ´ px3 ´ 1qq, which implies R is a Dedekind domain.

Spring 2018 Problem 10. By one definition, a Dedekind domain is a commutative Noetherian integral domain
R, integrally closed in its fraction field, such that R is not a field and every nonzero prime ideal in R is maximal.
Let R be a Dedekind domain, and let S be a multiplicatively closed subset of R. Show that the localization S´1R
is either the zero ring, a field, or a Dedekind domain.
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If 0 P S, then S´1R is the zero ring. If S “ Rzt0u, then S´1R is a field. Assume 0 R S and S ‰ Szt0u. It is clear
that S´1R is a commutative integral domain since R is an integral domain. There is a bijective correspondence
between the ideals of p Ă R that intersect trivially with S and the ideals of S´1p Ă S´1R. Let

S´1I1 Ă S´1I2 Ă . . .

be an increasing chain of ideals in S´1R. Then I1 Ă I2 Ă . . . is an increasing chain of ideals in R for

Ij :“
!

r P R :
r

1
P S´1Ij

)

,

the ideal of numerators in S´1Ij . Since R is Noetherian, the chain terminates so Ik “ Ik`i for all i P N. As a result
S´1Ik “ S´1Ik`i for all i P N and the chain in S´1R terminates. We conclude that S´1R is Noetherian.

We have a correspondence between prime ideals p Ă R that do not intersect S and prime ideals S´1p Ă S´1R.
Take a chain of prime ideals

0 Ă S´1p1 Ă S´1p2 Ă . . .

which corresponds to a chain of prime ideals 0 Ă p1 Ă p2 Ă . . . of R. Each non-zero prime ideal of R is maximal
so pi “ p1 for all i P N. Thus S´1pi “ S´1p1 for all i P N. We conclude that each non-zero prime ideal of S´1R is
maximal.

We will show that S´1R is integrally closed in its fraction field. Let K be the fraction field of R and S´1R is
a subring of K. Let r

s P K be integral over S´1R. If r
s P R, then r

s P S´1R so assume r
s R R. There is a monic

polynomial f “ xn ` an´1x
n´1 ` ¨ ¨ ¨ ` a0 P pS´1Rqrxs such that fp r

s q “ 0. Each ai “ ri
si

for ri P R and si P S.

Define t :“
śn´1

i“1 si P S so

0 “

´r

s

¯n

`
rn´1

sn´1

´r

s

¯n´1

` ¨ ¨ ¨ `
r0
s0

“ tn
´r

s

¯n

` tn
rn´1

sn´1

´r

s

¯n´1

` ¨ ¨ ¨ ` tn
r0
s0

“

ˆ

tr

s

˙n

`
trn´1

sn´1

ˆ

tr

s

˙n´1

` ¨ ¨ ¨ `
tnr0
s0

.

Note that tirn´i

sn´i
P R by the choice of t P S. Thus tr

s is a root of a monic polynomial in Rrxs. Since R is integrally

closed, tr
s P R. Then r

s “ r1

t P S´1R for some r1 P R. We conclude that S´1R is integrally closed in K. As a result,
S´1R is a Dedekind domain.

Fall 2020 Problem 7(a). Let R be a Dedekind domain with quotient field K and I a non-zero ideal in R.
Show that every ideal in R{I is a principal ideal.

Since R is a Dedekind domain, there is a unique factorization of I into prime ideals given by I “ pk1
1 ¨ ¨ ¨ pkm

m .
Then the Chinese Remainder Theorem implies

R{I » ‘m
i“1R{pki

i » ‘m
i“1Rpi{p

ki
i Rpi .

Each prime ideal is maximal in R so Rpi is a DVR and, thus, a PID. The quotient of a PID by an ideal will remain
a principal ideal ring via the ideal correspondence. Thus R{I is isomorphic to the direct sum of principal ideal
rings, which implies R{I is a principal ideal ring.

Spring 2016 Problem 3. Let A be an integral domain with field of fractions F . For an A-ideal a, prove that
a is an A-projective ideal finitely generated over A if there exists an A-submodule b of F such that ab “ A, where
ab is an A-submodule of F generated by ab for all a P a and b P b.

We will first show that a is a finitely generated ideal of A. Since ab “ A, there is a finite sum
řn

i“1 aibi “ 1 for
ai P a and bi P b. Let a P A, then a “ ap

řn
i“1 aibiq “

řn
i“1 aipabiq. Since ab “ A, we have abi P A for all 1 ď i ď n.

Thus taiu
n
i“1 is a generating set of A as an A-module.

Now we will show that a is a projective ideal of A. Since a is finitely generated by taiu
n
i“1, there is a short exact

sequence

0 kerpfq An a 0
f

2



with fpeiq “ ai for teiu
n
i“1 the standard generating set of An. Define the A-module homomorphism h : a Ñ An by

hpaq “
řn

i“1pabieiq. Then fphpaqq “ fp
řn

i“1pabieiqq “
řn

i“1 abifpeiq “
řn

i“1 abiai “ a. We conclude that h is a
splitting and An » a ‘ kerpfq. Since a is a direct summand of a free A-module, a is a projective A-module.
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Spring 2016 Problem 10.

(a) Determine the Galois group of the polynomial X4 ´ 2 over Q, as a subgroup of a permutation group. Also,
give generators and relations for this group.

See Fall 2014 Problem 3 Case 4.

(b) Determine the Galois group of the polynomial X3 ´ 3X ´ 1 over Q. (Hint: for polynomials of the form
X3 ` aX ` b, the quantity ∆ “ ´4a3 ´ 27b2, known as the discriminant, plays a key theoretical role.) Explain
your answer.

Let K be the splitting field of an irreducible polynomial in F rxs with roots tα1, . . . , αnu. Define

δ :“
ź

iăj

pαi ´ αjq,

and the discriminant ∆ :“ δ2. For σ P Galpfq, σpδq “ signpσqδ so σp∆q “ ∆ for all σ P Galpfq. Thus ∆ P F ,
and each σ P Galpfq such that σpδq “ δ must be an even permutation of the roots of f . If δ P F , then Galpfq

must be a subgroup of An.

For a degree 3 polynomial, there will be at least one real root. The other roots could both be real or could be
a conjugate pair of complex roots. Let the roots of f be tx, a ` bi, a ´ biu for a, b, x P R, then

δ “ px ´ pa ` biqqpx ´ pa ´ biqqpa ` bi ´ pa ´ biqq “ 2bipx2 ´ 2x ` pa2 ` b2qq.

Note ∆ “ δ2 ă 0 for b ‰ 0. In this problem, ∆ “ ´4a3 ´ 27b2 “ ´4p´3q3 ´ 27p´1q2 “ 81 ą 0 so the roots of
f are real. Since ∆ “ 92, we have δ P Q. By above, Galpfq embeds in A3, and |Galpfq| ď |A3| “ 3. By the
rational root test, f is irreducible over Q. Then rF rαs : F s “ 3 “ |Galpfq| “ |A3| for some α P R a root of f .
We conclude Galpfq » A3.

Proposition. A polynomial p P F rxs is separable if and only if it is relatively prime to its formal derivative.

Fall 2017 Problem 7.

(a) Show that there is at most one extension F pαq of a field F such that α4 P F , α2 R F , and F pαq “ F pα2q.

We have that α is a root of f :“ x4 ´ α4 P F rxs and α2 is a root of the irreducible polynomial x2 ´ α4. Thus
rF rα2s : F s “ 2.

Assume first that charpF q “ 2. Then x4 ´ α4 “ x4 ` α4 “ px ` αq4. Since rF rαs : F s “ rF rα2s : F s “ 2, the
minimal polynomial of α must be px ` αq2, which implies α2 P F , a contradiction.

Assume charpF q ‰ 2. Then f 1 “ 4x3 ‰ 0, which is relatively prime to f . Then f is separable with roots
t˘α,˘αξu for ξ2 “ ´1. We have two cases for the minimal polynomial of α, denoted mα P F rxs. If mα “

px ´ αqpx ` αq, then α2 P F , a contradiction. If mα “ px ˘ αqpx ˘ αξq, then α2ξ P F . Note ξ P F would imply
α2 P F so ξ R F . But α2pα2ξq “ α4ξ P F rα2s “ F rαs so ξ P F rαs. We have the tower of fields F rαs{F rξs{F
with rF rαs : F s “ 2. Since ξ R F , we conclude F rαs “ F rξs. Therefore, there is at most one field extension like
F rαs since it would equal F rξs.

(b) Find the isomorphism class of the Galois group of the splitting field of x4 ´ a for a P Q with a R ˘Q2.

By Fall 2014 Problem 3 Case 4, we have G » D4 for a ą 0 and, by Fall 2014 Problem 3 Case 5, we have
G » D4 for a ă 0.

Proposition (Eisenstein’s Criterion). Let f P Zrxs with f “ anx
n ` ¨ ¨ ¨ ` a0. If there exists a prime p P Z for

which p divides ai for 0 ď i ă n, p does not divide an, and p2 does not divide a0, then f is irreducible in Qrxs.

Fall 2016 Problem 7. Let f P QrXs and ξ P C a root of unity. Show that fpξq ‰ 21{4.

1



We will assume that fpξq “ 21{4 for some f P QrXs and draw a contradiction. We know that Qrξs{Q is a Galois
extension with GalpQrξs{Qq » pZ{nZqˆ for ξ a primitive nth root of unity. In particular, GalpQrξs{Qq is abelian so
Qrξs{Q is an abelian Galois extension. By assumption fpξq “ 21{4 so 21{4 P Qrξs and Qr21{4s{Q is a subextension
of Qrξs{Q. By the Galois correspondence, Qr21{4s “ pQrξsqH for some subgroup H Ă GalpQrξs{Qq and Qr21{4s{Q
should be a normal extension since any subgroup of an abelian group is normal. The minimal polynomial of 21{4

over Q is x4 ´ 2 which is irreducible by Eisenstein’s Criterion. But x4 ´ 2 does not split in Qr21{4s so Qr21{4s{Q is
not a Galois extension, contradicting our assumption. We conclude that fpξq ‰ 21{4 for all f P QrXs.

2
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Theorem (Primitive Element Theorem). There are two common formulations of the result. Result (b) implies (a)
via the Galois correspondence.

(a) Every separable field extension of finite degree has the form F pβq{F for some β. The element β is known as a
primitive element.

(b) A finite field extension is separable if and only if there exist finitely many intermediate field extensions.

Fall 2018 Problem 3. Let K{F be a finite extension of fields. Suppose that there exist finitely many
intermediate fields K{E{F . Show that K “ F pxq for some x P K.

If F is a finite field, then K is also a finite field of the same characteristic. We know Kˆ is cyclic so K “ F pxq

for some x P K.
Assume F is not finite. Let α, β P K. By assumption, there are only a finite number of distinct fields F pα` cβq

for all c P F . Since F is infinite, there are c1, c2 P F with c1 ‰ c2 such that E :“ F pα ` c1βq “ F pα ` c2βq. Thus
pc1 ´ c2qβ P E and β P E. Further, α P E and the field F pα, βq can be generated by one element. By an inductive
argument, for E “ F pα1, . . . , αnq there are corresponding c1, . . . , cn such that E “ F pα1 ` c2α2 ` ¨ ¨ ¨ ` cnαnq.
Since K{F is a finite field extension, K “ F pα1, . . . , αnq so K “ F pxq for some x P K.

This proof is based on that of the Primitive Element Theorem found in Lang Section 5.4.

Spring 2015 Problem 6. Let K Ă L be subfields of C and let p be a prime. Assume K contains a non-trivial
p-th root of unity. Show that L{K is a degree p Galois extension if and only if there is an element a P K that does
not admit a p-th root, such that L “ Kp p

?
aq.

(ñ) Assume that L{K is a degree p Galois extension. Let G :“ GalpL{Kq. Then G is cyclic, generated by some
σ P G. Let ξ be a primitive p-th root of unity. Since some primitive p-th root of unity is contained in K, we have
all primitive p-th roots of unity in K. Thus ξ P K and σpξq “ ξ. Since L{K is separable, the Primitive Element

Theorem implies L “ Krβs for some β in the algebraic closure of K. Define α :“
řp´1

i“0 σipβqξp´i. Then

σpαq “ σ

˜

p´1
ÿ

i“0

σipβqξp´i

¸

“

p´1
ÿ

i“0

σi`1pβqσpξqp´i “

p´i
ÿ

i“0

σi`1pβqξp´i “

p
ÿ

i“1

σipβqξp´i`1 “ αξ

σpαpq “ σpαqp “ pαξqp “ αpξp “ αp

shows that α R K. Additionally G is cyclic so αp is fixed by G and αp P K. Define a :“ αp P K. Then the splitting
field M :“ Krαs of xp ´ a is a subfield of L that strictly contains K. Then rM : Ks ‰ 1 divides rL : Ks “ p so
rM : Ks “ p. We conclude that L “ M “ Kr p

?
as.

(ð) Assume there is an element a P K that does not admit a p-th root and L “ Kp p
?
aq. Then L is the splitting

field of xp ´ a over K. The roots of xp ´ a are t p
?
aξiu for ξ a primitive p-th root of unity and 0 ď i ď p ´ 1.

Since charpKq “ 0, K is a perfect field. Then L{K is separable and, thus, Galois. Note p
?
a R K so there is some

σ P GalpL{Kq that does not fix p
?
a. The image of p

?
a is a root which gives σp p

?
aq “ p

?
aξi for some 1 ď i ď p ´ 1.

We have σpp p
?
aq “ p

?
a and σjp p

?
aq ‰ p

?
a for all 1 ď j ď p ´ 1 since p is prime. The order of σ must be at least

p. However, L{F Galois implies p ď |GalpL{F q| “ rL : F s “ rKp p
?
aq : Ks ď p. Thus rL : Ks “ p.

Spring 2016 Problem 7. Show that for every positive integer n, there exists a cyclic extension of Q of degree
n which is contained in R.

1



By Dirichlet’s Theorem, there is some odd prime integer p such that p ” 1 (mod 2n). Let ξ be a primitive pth
root of unity. We know that Qrξs{Q is a Galois extension with rQrξs : Qs “ φppq “ p ´ 1 for φ : Z Ñ Z Euler’s
totient function. The Galois group G :“ GalpQrξs{Qq » pZ{pZqˆ » Z{pp ´ 1qZ is cyclic. Complex conjugation
τ : Qrξs Ñ Qrξs is an order two Q-automorphism of Qrξs. Let H be the order two subgroup of G generated by
τ and K :“ QrξsH . We have K Ă R since K is fixed by complex conjugation. (For a more explicit description,
K “ Qrξ ` ξ´1s.) Then Galois correspondence implies Qrξs{K is Galois with rQrξs : Ks “ 2. As a result,
rK : Qs “

p´1
2 “ kn for some positive integer k. Since Qrξs{Q is cyclic, H is a normal subgroup of G so K{Q

is Galois with GalpK{Qq » G{H. The group G{H is cyclic so K{Q is a cyclic extension of Q of degree kn with
K Ă R. The fixed field of the unique subgroup of order k in GalpK{Qq is the desired cyclic degree n extension.

Fall 2016 Problem 5. Let f P F rXs be an irreducible separable polynomial of prime degree over a field F and
let K{F be a splitting field of f . Prove that there is an element in the Galois group of K{F permuting cyclically
all roots of f in K.

Note that K{F is a Galois extension since f is separable and K is the splitting field of f . Let α P K be a root of
f . Then F rαs{F is a field extension with rF rαs : F s “ p since f is irreducible. Then K{F rαs{F is a tower of field
extensions so rF rαs : F s “ p divides rK : F s. Now |GalpK{F q| “ rK : F s since K{F is a finite Galois extension of
F . Thus p||GalpK{F q| and Cauchy’s Theorem implies there is some element σ P GalpK{F q of order p. We know
σ permutes the roots of f , of which there are p, so σ must permute the roots cyclically. Alternatively, embed the
Galois group into the symmetric group Sp. The order p elements are p-cycles.

Spring 2016 Problem 6. Let K be a field of characteristic p ą 0. For an element a P K, show that the
polynomial P pXq “ Xp ´ X ` a is irreducible over K if and only if it has no root in K. Show also that, if P is
irreducible, then any root of it generates a cyclic extension of K of degree p.

(ñ) We will prove the contrapositive. Assume P has a root α P K. We can immediately conclude that P is not
irreducible in K since P “ pX ´ αqg for some g P KrXs.

(ð) We will prove the contrapositive. Assume P is reducible so P “
śk

i“1 gi for irreducible gi P KrXs with
degpgiq ă p. Let α P K be a root of g :“ g1. Then α is a root of P and αp ´ α ` a “ 0. Since K is a field of
characteristic p, we have Fp Ă K for Fp the field of p elements. Let k P Fp. Then

pα ` kqp ´ pα ` kq ` a “ αp ` kp ´ α ´ k ` a “ αp ` k ´ α ´ k ` a “ αp ´ α ` a “ 0.

We conclude that the set of roots of P is tα ` k : k P Fpu Ă Krαs, which implies P is separable over K. Further,
Krαs is the splitting field of P so Krαs{K is a Galois extension. Let G :“ GalpKrαs{Kq and take σ P G. Then
σpαq “ α ` k for k P Fp. We see that σℓpαq “ α ` kℓ. Then kℓ “ 0 in Fp implies k “ 0 in Fp or p|ℓ “ 0 in Z.
In the latter case, the order of σ is at least p. Since σppαq “ α, we have that the order of σ is p. Then |G| ě p,
contradicting our assumption that degpgq ă p. We conclude σpαq “ α and g “ X ´ α, which implies P has a root
in K.

Assume P is irreducible. Let α P K be a root of P . By above, the roots of the separable polynomial P are
tα` k : k P Fpu so P splits in Krαs. Then Krαs{K is Galois with rKrαs : Ks “ p. The Galois group GalpKrαs{Kq

is order p and, thus, cyclic. We conclude that any root of P generates a cyclic extension of K of degree p.
The polynomial in question is an example of an Artin-Schreier polynomial.

Proposition. Let L and M be field extensions of K. If L is a Galois extension of K, then the following are
equivalent:

(a) L and M are linearly disjoint over K

(b) L X M “ K

(c) The restriction map GalpLM{Mq Ñ GalpL{Kq is an isomorphism.

Spring 2018 Problem 2. Let ζ9 “ 1 and ζ3 ‰ 1 with ζ P C.

(a) Show that 3
?
3 R Qpζq.

For the sake of contradiction, assume that 3
?
3 P Qpζq. Note that ζ is a primitive ninth root of unity. Then

Qpζq{Q is a Galois extension with GalpQpζq{Qq » pZ{9Zqˆ. In particular, GalpQpζq{Qq is abelian. The

2



polynomial f “ x3 ´ 3 is irreducible over Q by Eisenstein’s criterion with roots t
3
?
3ζ3iu2i“0 for 3

?
3 P R. Thus

Qp
3
?
3q Ă R is not the splitting field of f , the minimal polynomial of 3

?
3. Since Qpζq{Q is abelian, Qp

3
?
3q{Q

is a normal extension, a contradiction. We conclude that 3
?
3 R Qpζq.

(b) If α3 “ 3, show that α is not a cube in Qpζ, αq.

Assume that β3 “ α and β P Qpζ, αq for the sake of contradiction. Then Qpζ, αq is the splitting field of
mβ “ x9 ´ 3 over Q. By Eisenstein’s Criterion, mβ is irreducible in Qrxs so rQpβq : Qs “ 9. Since Q is perfect,
Qpζ, αq{Q is a Galois extension. We build the tower of fields below. Since Qpαq XQpζq is a subfield of a degree
3 extension Qpαq{Q, either Qpαq XQpζq “ Qpαq or Qpαq XQpζq “ Q. By (a), Qpαq XQpζq “ Q. Since Qpζq{Q
Galois, the above Proposition implies Qpαq and Qpζq are linearly disjoint. Thus the degree of their compositum
over Q is

rQpζ, αq : Qs “ rQpαq : QsrQpζq : Qs “ 18.

Further, Qpα, ζq{Qpαq is Galois and the restriction map from GalpQpα, ζq{Qpαqq to GalpQpζq{Qq is an isomor-
phism. As before, GalpQpζq{Qq is abelian so Qpβq{Qpαq must be a Galois extension. The polynomial g “ x3´α
has no roots in Qpαq and, as a degree 3 polynomial, is irreducible over Qpαq. With g the minimal polynomial
of β over Qpαq and Qpβq{Qpαq Galois, g must split in Qpβq. Thus the roots tβζ3iu2i“0 of g are elements of
Qpβq. Proceeding,

ζ3 “ β2pβζ3q P Qpβq

so Qpζ3q is a subfield of Qpβq. However, rQpβq : Qs “ 9 and rQpζ3q : Qs “ φp3q “ 2 for φ Euler’s totient
function, a contradiction. Therefore, α does not have a third root in Qpζ, αq.

Qpζ, αq

Qpβq

Qpζq

Qpαq

Qpζ3q

Q

3

3

2

6

3



Math 210B Discussion Week 8

Matthew Gherman

February 24, 2022

Theorem (Isomorphism extension). Let L{K{F be a tower of algebraic field extensions. For every automorphism
σ : K Ñ K, there is an automorphism σ̃ : L Ñ L such that σ̃|K “ σ.

Spring 2017 Problem 10. Let K{F be a (finite) Galois field extension with G “ GalpK{F q and let H Ă G
be a subgroup. Determine in terms of H and G the group GalpKH{F q of all field automorphisms of KH over F .

Take an element σ P G. We want to show that σ|KH P AutpKH{F q if and only if σ P NGpHq. (ñ) Assume
σ|KH P AutpKH{F q so σpKHq Ă KH . Let h P H and x P KH . Then

pσhσ´1qpxq “ σphpσ´1pxqqq “ σpσ´1pxqq “ x

since σ´1pxq P KH . We note σhσ´1 fixes all x P KH so σhσ´1 P H. Thus σ P NGpHq. (ð) We will prove the
contrapositive. Assume σ|KH R AutpKH{F q. Then there is some y P KH for which σpyq “ z R KH . Thus there is
some h P H such that hpzq ‰ z so σ´1phpσpyqqq “ σ´1phpzqq ‰ y. As a result, σphpσ´1pxqqq R H and σ R NGpHq.

The above result allows us to define the restriction homomorphism r : NGpHq Ñ AutpKH{F q by rpσq “ σ|KH .
By the Isomorphism Extension Theorem, r is surjective. It is clear that H Ă kerprq since h P H fixes all elements
of KH . Take σ P kerprq so σ fixes each x P KH . Then the subgroup I Ă G generated by σ satisfies KI Ą KH . This
implies I Ă H and σ P H. We conclude that kerpfq “ H and AutpKH{F q » NGpHq{H by the First Isomorphism
Theorem.

Fall 2017 Problem 8. Let F be a field, and let f, g P F rxszt0u be relatively prime and not both constant.

Show that F pxq has finite degree d “ maxpdegpfq,degpgqq over its subfield F
´

f
g

¯

. (Hint: If the degree were less

than d, show that there exists a nonzero polynomial with coefficients in F rxs of degree less than d having f
g as a

root.)

Note that f
g is a root of the irreducible polynomial p “ gy ´ f for p P pF rxsqrys. Since f and g are relatively

prime, p is primitive. The polynomial q “
f
g gpT q ´ fpT q P

´

F
´

f
g

¯¯

rT s is degree d and has x as a root. Thus
”

F pxq : F
´

f
g

¯ı

ď d and F pxq is a finite extension of F
´

f
g

¯

. Let m “ akT
k ` ak´1T

k´1 ` ¨ ¨ ¨ ` a0 be the

minimal polynomial of x over F
´

f
g

¯

. By clearing denominators, we may assume that each ai P F
”

f
g

ı

. Then

m “ bn

´

f
g

¯n

` bn´1

´

f
g

¯n´1

` ¨ ¨ ¨ ` b0 for bi P F rT s. Replace the variable T with x in each bi to obtain

M “ bny
n ` bn´1y

n´1 ¨ ¨ ¨ ` b0 in pF rxsqrys with f
g as a root. Thus p divides M in pF rxsqrys. Since p is primitve,

g divides bn and f divides b0. We have degpbnq ě degpgq and degpb0q ě degpfq so degpmq ě d. Therefore,
”

F pxq : F
´

f
g

¯ı

“ d.

Fall 2015 Problem 4. Let K be a field and let L be the field KpXq of rational functions over K.

(a) Show that there are two unique K-automorphisms f and g of the field L “ KpXq such that fpXq “ X´1 and
gpXq “ 1 ´ X. Let G be the subgroup of the group of K-automorphisms of L generated by f and g. Show
that |G| ą 3.

We define f : L Ñ L as fpkq “ k for k P K and fpXq “ X´1. Then extend f to a K-homomorphism. Similarly,
g : L Ñ L is defined as gpkq “ k for k P K and gpXq “ 1 ´ X. Then we extend g to a K-homomorphism. We

will now show that f and g are automorphisms of L. Since L is a field, f and g are injective. Take ppXq

qpXq
P L

1



for ppXq, qpXq P KrXs. Then f
´

ppX´1
q

qpX´1q

¯

“
fpppX´1

qq

fpqpX´1qq
“

ppXq

qpXq
. Thus f is a K-automorphism. Similarly,

g
´

pp1´Xq

qp1´Xq

¯

“
ppXq

qpXq
so g is a K-automorphism.

Note that f ‰ g via the image of X. Then G contains at least te, f, gu where e is the identity K-automorphism.

gfpXq “ gpX´1q “
1

1 ´ X

fgpXq “ fp1 ´ Xq “ 1 ´ X´1 “
X ´ 1

X

If 1
1´X “ X´1

X , then X`p1´Xq
2

Xp1´Xq
“ 0 and X would be algebraic over K, a contradiction. Thus gf ‰ fg as

K-automorphisms. A similar argument shows that both gf and fg are distinct from e, f , and g. Thus G
contains at least te, f, g, fg, gfu and |G| ą 3.

It will be important later to show that |G| ě 6.

fgfpXq “ f

ˆ

1

1 ´ X

˙

“
1

1 ´ X´1
“

X

X ´ 1

A similar argument to above shows that fgf is distinct from e, f , g, fg, and gf . Thus |G| ě 6.

(b) Let E “ LG. Show that P “
pX2

´X`1q
3

X2pX´1q2
P E.

We want to show that P is fixed under f and g action.

fpP q “
fppX2 ´ X ` 1q3q

fpX2pX ´ 1q2q
“

pX´2 ´ X´1 ` 1q3

X´2pX´1 ´ 1q2
“

p 1´X`X2

X2 q3

p1´Xq2

X2X2

“
p1 ´ X ` X2q3

X2p1 ´ Xq2
“ P

gpP q “
gppX2 ´ X ` 1q3q

gpX2pX ´ 1q2q
“

pp1 ´ Xq2 ´ p1 ´ Xq ` 1q3

p1 ´ Xq2p´Xq2
“

pX2 ´ X ` 1q3

X2pX ´ 1q2
“ P

Thus P P LG.

(c) Show that L{KpP q is a finite extension of degree 6.

We construct a polynomial with coefficients in KpP q for which X is a root. Define

ppT q :“ pT 2 ´ T ` 1q3 ´ P pT 2pT ´ 1q2q

for ppT q P KpP qrT s so ppXq “ 0. Since p is degree 6, rL : KpP qs ď 6. Note that P P LG by (b) so
KpP q Ă LG Ă L. By the final argument of (a), we have 6 ď rL : LGs ď rL : KpP qs ď 6. Therefore, L{KpP q is
a finite extension of degree 6.

(d) Deduce that E “ KpP q and that G is isomorphic to the symmetric group S3.

The chain of inequalities in (c) implies rL : LGs “ 6. By Galois correspondence, L{LG is a Galois extension
with Galois group GalpL{LGq » G. The finite Galois extension satisfies |G| “ rL : LGs “ 6. By (a), it is clear
that G is not abelian. The only non-abelian group of order 6 is S3.

Fall 2018 Problem 4. Let K be a subfield of the real numbers and f an irreducible degree 4 polynomial over
K. Suppose that f has exactly two real roots. Show that the Galois group of f is either S4 or of order 8.

Note that charpKq “ 0 so each finite field extension is separable. Let r, s P R be the two distinct real roots of f .
Let α P C be a complex root of f so α is the final root of f . Since f is irreducible, rKrrs : Ks “ 4. Case 1: Assume
s P Krrs. Then f “ px ´ rqpx ´ sqh for h P pF rrsqrxs and degphq “ 2. Note that Krrs Ă R but α R R. Thus the
quadratic h is irreducible over Krrs. We conclude rKrr, αs : Ks “ rKrr, αs : KrrssrKrrs : Ks “ 8 where Krr, αs is
the splitting field of f over K. Then Krr, αs{K is Galois and |Galpfq| “ 8.

Case 2: Assume s R Krrs. Then f “ px´ rqg with g P pKrrsqrxs and degpgq “ 3. Since Krrs Ă R and s R Krrs,
the cubic g is irreducible over Krrs. Then rKrr, ss : Ks “ 12 and f “ px ´ rqpx ´ sqh for h P pKrr, ssqrxs with
degphq “ 2. Since Krr, ss Ă R, the quadratic h will be irreducible over Krr, ss. We have Krr, s, αs is the splitting
field of f over K so Krr, s, αs{K is Galois. Additionally, rKrr, s, αs : Ks “ |GalpKrr, s, αs{Kq| “ 24. The Galois
group defines a group action on the set of four roots of f . Therefore, we have an injective group homomorphism
ϕ : GalpKrr, s, αs{Kq Ñ S4. By an order argument, ϕ is surjective and GalpKrr, s, αs{Kq » S4.
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Spring 2019 Problem 5. Let Φn denote the nth cyclotomic polynomial in ZrXs and let a be a positive integer
and p a (positive) prime not dividing n. Prove that if p|Φnpaq in Z, then p ” 1 mod n.

We have Φnpaq divides an ´ 1 so p divides an ´ 1. With gcdpa, an ´ 1q “ 1, we conclude that p does not divide
a. In particular, the equivalence class of a is a unit in pZ{pZqˆ. Since an ” 1 (mod p), we know that the order of
a in pZ{pZqˆ divides n. If the order of a is n, then n divides |pZ{pZqˆ| “ p ´ 1 as desired.

Assume now that the order of a is strictly less than n. Then p divides ak ´ 1, and there is some divisor d of k
for which p divides Φdpaq. Since ΦdpaqΦnpaq divides xn ´ 1, a is a double root of xn ´ 1. However, the polynomial
xn ´ 1 has formal derivative nxn´1. Since p does not divide n, we conclude that xn ´ 1 is separable over Fp, a
contradiction.
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Math 210B Discussion Week 9

Matthew Gherman

March 3, 2022

Definition 1. A left R-module M is simple if M ‰ 0 and M has no non-trivial submodules. M is simple if and
only if M » R{I as R-modules for some maximal left ideal I.

Lemma (Schur). Let f : M Ñ N be an R-module homomorphism of simple R-modules. Then f “ 0 or f is an
isomorphism. As a corollary, if M is a simple R-module, then EndRpMq is a division ring.

Definition 2. A left R-module M is semisimple if there is a family of simple submodules Mi such that

M “ ‘iMi.

A semisimple ring R is semisimple as a left R-module. Equivalently, R will be semisimple as a right R-module.

Remark 1. A simple ring is not necessarily semisimple. Simple rings are those without two-sided ideals while
semisimplicity is a module concept.

Theorem. Let R be a ring. The following are equivalent:

(a) R is semisimple;

(b) every left R-module is semisimple;

(c) every left R-module is projective;

(d) every left R-module is injective;

(e) every short exact sequence of left R-modules is split.

Theorem (Artin-Wedderburn). A ring R is semisimple if and only if

R » M1pD1q ˆ ¨ ¨ ¨ ˆ MkpDkq

for some division rings D1, . . . , Dk.

Definition 3. The Jacobson radical JpRq of a ring is the two-sided ideal that is the intersection of all left maximal
ideals of R. An element x P R is in JpRq if and only if 1 ´ axb is in Rˆ for all a, b P R. Equivalently, the Jacobson
radical is the set of elements r P R such that rM “ 0 for M a simple left R-module.

Theorem. A ring R is semisimple if and only if R is Artinian and JpRq “ 0.

Theorem. A ring is simple and Artinian if and only if R “ MnpDq for some division ring D.

Fall 2014 Problem 5. Let R be a commutative algebra over Q of finite dimension n. Let ρ : R Ñ MnpQq

be the regular representation, and define Tr : R Ñ Q by the matrix trace of ρ. If the pairing px, yq “ Trpxyq is
non-degenerate on R, prove that R is semi-simple.
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We will show that a non-degenerate trace implies that R has no non-trivial nilpotent elements. Let r P R be
nilpotent with rk “ 0. Then ρprq is a matrix such that ρprkq “ ρprqk “ 0. Then the minimal polynomial of ρprq

has the form Xm for some m. We conclude that Trprq “ 0 since Trprq appears as a non-leading coefficient in the
minimal polynomial. In particular, rx is nilpotent for all x P R since R is commutative. Thus Trprxq “ 0 for all
x P R. If px, yq is non-degenerate, then R has no non-trivial nilpotent elements. In other words, the nilradical of
R is trivial.

Every ideal of R is closed under multiplication by R, which means each ideal is a Q-subspace of a finite-
dimensional vector space. Thus R is Artinian by a dimension argument for a descending chain of ideals. In an
Artinian commutative ring, each prime is maximal so the Jacobson radical and nilradical are equal. Since the
nilradical is trivial, the Jacobson radical of A is trivial. We now prove that an Artinian ring with trivial Jacobson
radical is semi-simple. A Artinian implies there are finitely many maximal ideal tmiu for 1 ď i ď ℓ. Thus
Xℓ

i“1mi “ 0. By the Chinese Remainder Theorem,

A » A{ Xℓ
i“1 mi » ‘ℓ

i“1A{mi.

Each A{mi is a simple R-module so R is a semi-simple R-module. This shows R is a semi-simple ring.

Fall 2017 Problem 3. Let k be a field and A a finite-dimensional k-algebra. Denote by JpAq the Jacobson
radical of A. Let t : A Ñ k be a morphism of k-vector spaces such that tpabq “ tpbaq for all a, b P A. Assume kerptq
contains no non-zero left ideal. Let M be the set of elements a in A such that tpxaq “ 0 for all x P JpAq. Show
that M is the largest semi-simple left A-submodule of A.

We want to show that M is the sum of all of the simple modules of A. Let N be a simple left A-module. Then
JpAqN “ 0 by the definition of the Jacobson radical as the annihilator of all simple left A-modules. Since tpxnq “ 0
for n P N and all x P JpAq, we have N Ă M . Thus M contains the sum of all the simple left A-submodules of A.

Take a descending chain of left ideals of A. Each left ideal is a finite-dimensional k-vector space. Thus the
chain must terminate, and A is left Artinian as a left A-module. The same argument works for right ideals so A
is Artinian as a ring. Consequently, A{JpAq is an Artinian ring. Since JpAq is a two-sided ideal of A, we have
JpAqM is a left ideal contained in kerptq. We assume kerptq contains no non-zero left ideal so JpAqM “ 0. Thus M
has the structure of a left A{JpAq-module. Now A{JpAq is Artinian and has trivial Jacobson radical so A{JpAq is
a semisimple ring. We conclude that M is a semisimple left A{JpAq-module. In other words, M is the direct sum
of simple left A{JpAq-modules. These simple A{JpAq-modules are simple as A-modules so M is a semisimple left
A-module. Since M contains the sum of all simple left A-modules, M is the largest semisimple left A-submodule
of A.

Fall 2018 Problem 12. Let F be a finite field and K Ă F the subfield of an algebraic closure generated by all
roots of unity. Find all simple finite dimensional K-algebras.

Let L{F be an algebraic extension. Then for each α P L, we have a finite extension F rαs{F . Then F rαs is the
finite field of order q for q some power of a prime. Since pF rαsqˆ is cyclic of order q ´ 1, Krαs is a subfield of K
for each α P L so L is a subfield of K. We conclude that K is the algebraic closure of F .

By Artin-Wedderburn, a simple finite dimensionalK-algebra A is a matrix algebras with coefficients in a division
ring D over K. However, if dimKpDq is finite, we must have D Ă K by K algebraically closed. Thus A » MnpKq

for some integer n ě 1.

Spring 2019 Problem 7. Let F be a field and let R be the ring of 3 ˆ 3 matrices over F with (3,1) and (3,2)
entry equal to 0. Thus,

R “

¨

˝

F F F
F F F
0 0 F

˛

‚.

(a) Determine the Jacobson radical J of R.

Left multiplication by elements of R can perform the row operations: multiplication of a row by a constant,
switching rows 1 and 2, and adding a multiple of any row to rows 1 or 2. The elementary matrices except
i “ 1, 2, j “ 3 do not satisfy pI ´ rEijq P Rˆ for all r P R. The elementary matrices E13 and E23 do satisfy
pI ´ rEijq P Rˆ for all r P R and, thus, generate the Jacobson radical J .
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(b) Is J a minimal left (respectively right) minimal ideal?

J is a minimal left ideal since the possible row operations can produce any matrix in J from a non-zero entry
in the 13 or 23 position. J is similarly a minimal right ideal by looking instead at column operations.

Fall 2019 Problem 4. Find all isomorphism classes of simple (i.e., irreducible) left modules over the ring MnpZq

of n by n matrices with Z-entries with n ě 1.

Every simple module is MnpZq{I for a left maximal ideal I of MnpZq. Left ideals in MnpZq are closed under row
operations. The Euclidean algorithm in Z allows us to reduce each column to elements that are multiples of the
greatest common divisor. The maximal ideals of Z are ppq for p P Z prime. Thus the left maximal ideals of MnpZq

should be matrices with any integers in the entries of two columns and the third column entries are multiples of p
for a prime p P Z.

Fall 2020 Problem 3. A ring R (commutative or non-commutative) is called a domain if ab “ 0 in R implies
a “ 0 or b “ 0. Suppose that R is a domain such that MnpRq, the ring of n ˆ n matrices over R, is a semisimple
ring. Prove that R is a division ring.

Prove that MnpRq is right Artinian implies R is right Artinian. (In fact, it is true that MnpRq is right Artinian
if and only if R is right Artinian.) Then R is an Artinian domain and, thus, a division ring by looking at the
multiplication by r on the left module map.

Take a descending chain of left ideals Ik in R. Then the corresponding descending chain of left ideals in
MnpRq terminates in finitely many steps. Then the scalar matrix for r P Im`1 can be written as an MnpRq-linear
combination of elements of Im. By looking at the diagonal entries of the linear combination, the element r P Im`1

can be written as an R-linear combination of elements of Im.
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Math 210B Discussion Week 10

Matthew Gherman

March 10, 2022

Definition 1. Let F be a field. An F -algebra A is a ring that has the structure of an F -vector space. A central
F -algebra A is one for which ZpAq “ F . A simple F -algebra A is one that does not have non-trivial two-sided
ideals. By Artin Wedderburn, a simple F -algebra is isomorphic to MnpDq for D a division F -algebra.

Proposition. Let A and B be two simple F -algebras. If A is central, then A bF B is simple F -algebra. As a
result, if A and B are central simple F -algebras, then A bF B is a central simple F -algebra.

Theorem (Noether-Skolem). Let A be a finite-dimensional central simple algebra over F and let S, T Ă A be
simple subalgebras. Let f : S Ñ T be an F -algebra isomorphism. Then there exists a P Aˆ such that fpsq “ asa´1

for all s P S.

Definition 2. The centralizer of a subalgebra S Ă A is

CApSq “ ta P A : as “ sa for all s P Su.

Theorem (Double centralizer). Let A be a central simple algebra over F and let S Ă A be a simple subalgebra.

(a) CApSq is simple with ZpCApSqq “ S X CApSq “ ZpSq,

(b) pdimpSqqpdimpCApSqqq “ dimpAq,

(c) CApCApSqq “ S.

Corollary. Let S be a central simple subalgebra of a central simple algebra A. Then A “ S bF CApSq.

Proposition. If A is a central simple algebra over F , then dimF A “ n2 for some n.

Fall 2014 Problem 4. Let D be a 9-dimensional central division algebra over Q and K Ă D be a field
extension of Q of degree greater than 1. Show that K bQ K is not a field and deduce that D bQ K is no longer a
division algebra.

Note K is a finite extension of Q and Q is perfect. By the Primitive Element Theorem, K » Qrxs{pfq for some
irreducible polynomial f P Qrxs. Since f is no longer irreducible in K, pfq is neither a maximal nor a prime ideal
of Krxs. We conclude K bQ K » Krxs{pfq is not a field and, further, not a domain. Alternatively, we can factor
f “ px´αqpx´βq for α, β P K, and K bQK » Krxs{pfq » Krxs{px´αqˆKrxs{px´βq by the Chinese Remainder
Theorem. (Note that the extension is separable so α and β are distinct.) Therefore, K bQ K is not even a domain.

Now K bQ K is a commutative subring of D bQ K that is not a domain. We conclude that D bQ K cannot be
a division algebra.

Spring 2018 Problem 4. Let p be a prime number, and let D be a central simple division algebra of dimension
p2 over a field k. Pick α P D not in the center and write K for the subfield of D generated by α. Prove that
D bk K » MppKq (the p ˆ p matrix algebra with entries in K).

Note that ZpD bk Kq “ ZpDq bk ZpKq “ k bk K “ K. The tensor product of a central simple algebra and a
simple algebra is simple. Therefore, D bk K is a central simple K-algebra. By Artin-Wedderburn, D bk K is the
product of matrix algebras over division rings. However, dimKpD bk Kq “ dimkpDq “ p2 so either D bk K is a
division algebra or D bk K » MppKq. Now K bk K is a subring of D bk K. We will show next that K bk K has
zero divisors so D bk K is not a division ring.

Let mα P krxs be the minimal polynomial of α over k. Then K bk K “ krxs{pmαq bk K “ Krxs{pmαq. Since
K contains a root of mα, mα “

śm
i“1 gi for some irreducible polynomials gi P Krxs. Therefore, Krxs{pmαq “

Krxs{p
śm

i“1 giq »
śm

i“1 Krxs{pgiq by the Chinese Remainder Theorem. It is clear that
śm

i“1 Krxs{pgiq has zero
divisors for m ě 2.
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Spring 2020 Problem 5. If K ‰ Q appears as a subfield (sharing the identity) of some central simple algebra
over Q of Q-dimension 9, determine (isomorphism classes of) the groups appearing as the Galois group of the Galois
closure of K over Q.

A central simple algebra A is not a field since ZpAq “ Q. Further K ‰ Q so dimQpKq “ 3. The field Q is perfect
so K is a separable field extension of Q. We can write K “ Qpαq by Primitive Element Theorem with mα of degree
3. Let L be the normal closure of K over Q. We can embed GalpL{Qq in S3 which implies GalpL{Qq is isomorphic
to Z{3Z or S3.

The action on K via left multiplication by α is a Q-linear ring homomorphism. Since K is a field, the kernel
of the map is trivial. Thus the map is an isomorphism between K and a subfield of M3pQq. We have shown that
any degree 3 field extension K of Q is a subfield of M3pQq. The field extension K “ Qpξ7 ` ξ´1

7 q is cyclic Galois
of degree 3. The polynomial x3 ´ 2 is irreducible over Q by Eisenstein’s criterion. Let K “ Qrxs{px3 ´ 2q so
GalpL{Qq » S3. Thus Z{3Z and S3 are the possibilities for the Galois group of the normal closure of K over Q.

Spring 2018 Problem 8. Let F be a field that contains the real numbers R as a subfield. Show that the tensor
product F bR C is either a field or isomorphic to the product of two copies of F , F ˆ F .

We note that C » Rrxs{px2 `1q so F bRC » F bRRrxs{px2 `1q » F rxs{px2 `1q. If x2 `1 is irreducible in F rxs,
then F rxs{px2 ` 1q is a field. If x2 ` 1 has a root in F , then F rxs{px2 ` 1q » F rxs{px´αq ˆF rxs{px´ βq » F ˆF
by the Chinese Remainder Theorem. Therefore, F bR C is either a field or isomorphic to F ˆ F .

Spring 2020 Problem 4. Compute the dimension of the tensor products of two algebras Qr
?
2s bZQr

?
2s over

Q and Qr
?
2s bZ R over R. Is R bZ R finite dimensional over R?

By the Chinese Remainder Theorem,

Qr
?
2s bZ Qr

?
2s » pQr

?
2sqrxs{px2 ´ 2q

» pQr
?
2sqrxs{px ´

?
2q ˆ pQr

?
2sqrxs{px `

?
2q

» Qr
?
2s ˆ Qr

?
2s

Qr
?
2s bZ R » Rrxs{px2 ´ 2q

» Rrxs{px ´
?
2q ˆ Rrxs{px `

?
2q

» R ˆ R.

Let tpiu be the prime integers in increasing order. We want to show that the field extension Qr
?
p1, . . . ,

?
pk`1s

over Qr
?
p1, . . . ,

?
pks is degree 2. Then Qr

?
p1, . . . ,

?
pk, . . . s is an infinite degree field extension over Q that

is a subalgebra of R. Then R bZ R will be infinite dimensional over R by applying the above argument to
Qr

?
p1, . . . ,

?
pk, . . . s bZ R.
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