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Definition 1. A left ideal in a ring R is a subset I < R that is an additive subgroup such that for all » € R and
a €1, rae I. Similarly, a right ideal satisfies ar € [ for all r € R and a € .

Definition 2. A subset S of R is finitely generated as a left R-module if there are elements {x1,...,2x} of R such
that each s € S can be written s = Zf=1 r;x; for some r; € R.

Fall 2014 Problem 8. Let A be a ring. Assume there is an infinite chain of left ideals Iy < I; < --- ¢ A with
I; # I; 1 for i = 0. Show that A has a left ideal that is not finitely generated as a left A-module.

Define I := U?O:o I;. We will show that I is a proper ideal. Let a,b € I. Then a € I}, for some k and b € I, for
some ¢. Without loss of generality, assume k > ¢. Then a,b € I;. Since Ij is an ideal, a + b € I so a + b € I.
Similarly, let r € A and a € I. Then a € I for some k and ra € I since I is an ideal. Thus ra € I and I is an
ideal of A. If 1 € I, then 1 € I, for some k. We would have I, = [;,,1 = --- = A, a contradiction. Therefore, I is a
proper ideal of A.

Assume for the sake of contradiction that I is finitely generated as a left A-module. Let {z1,...,2,} be the
generating set. Each x; € Ii, for some k;. Define k := max]* ; k;, then x; € I; for all <. This would imply that
Iy = Iy1 = -+ = A, a contradiction. Thus I is an ideal of A that is not finitely generated as a left A-module.

Definition 3. Let R and S be rings with multiplicative identities 1z and 1g respectively. A ring homomorphism
f: R — S is a function that satisfies:

(1) f(1r) = 1s,

(2) fla+0b) = f(a)+ f(b),

(3) flab) = f(a)f(b).

A ring endomorphism of R is a ring homomorphism f : R — R.

Definition 4. Let R be a commutative ring. A wunit r € R is such that there is some s € R for which rs = 1p.
Note that if ab = 1, then f(ab) = f(a)f(b) = 1s. A ring homomorphism takes units of R to units of S.

Spring 2015 Problem 7. Determine the ring endomorphisms of Fa[t,¢7!], where ¢ is an indeterminate.

Let R := Fy[t,t7!]. For a ring endomorphism f : R — R, we have f(1) = 1 so f fixes the base field Fs.
Let a € R*. Wenote 1 = f(1) = f(aa™') = f(a)f(a™') = f(a=!)f(a) so f will send units to units with
f(a™') = f(a)~!. Each endomorphism of R is thus determined by the image of ¢ since f(t~1) = f(t)~!. Take a
non-zero p € R. Then there is some k € Z such that t*p € Fy[t] and t*p has a non-zero constant term. If p e R,
then t*p e R* via (t*p)(p~'t=F) = 1. If t*p € R*, then the product of two units t~*(t*p) = p is also an element of
R*. Thus t*p is a unit of R if and only if p is a unit of R so it is sufficient to classify (F2[t])*. We show below
that (Fo[t])* = {1}. Thus R* = {t*} for k € Z, and a ring endomorphism f : R — R will always be defined by
f(t) = t* for some k € Z.

Let p(t) = ao + -+ + ant™ € (Fo[t])* with a, # 0. Then there is some ¢(t) = by + -+ + by, t"™ € Fa[t] such
that ¢(t)p(t) = 1. Distributing the product, the constant term agby = 1 so ag,bp € F5. Looking at the highest
degree term, a,b,, = 0 so b,, = 0 since I, is an integral domain. Then the next largest term in the expansion
yields apbn—1 = 0 so b,—1 = 0. We can continue this argument to show that b; = 0 for all # > 1. Then
bo(ag + -+ + ant™) = 1 implies n = 0. In Fy[¢], the set of units is {1}.



Remark 1. The more general result is f = ag +- - -+ a,t™ € R[t] is a unit if and only if ag € R* and a; is nilpotent
for all ¢ > 1.

Definition 5. An integral domain R is a ring for which ab = 0 implies a = 0 or b = 0 for a,b € R.

Definition 6. A non-zero, non-unit r in an integral domain R is irreducible if it is not a product of two non-units.
Equivalently, every factorization of r contains at least one unit.

Definition 7. A wnique factorization domain is an integral domain R for which every non-zero element of R can
be written as a product of irreducible elements and a unit. The factorization is unique up to rearrangement and
multiplication by a unit.

Definition 8. A principal ideal I in a ring R is generated by one element x € R. In other words, every element
a € I satisfies a = rz for some r € R. We write I = (z).
A principal ideal domain is an integral domain R for which each ideal is principal.

Example 1. Every PID is a UFD.

Definition 9. A proper ideal p in a commutative ring R is prime if ab € p implies that a € p or b € p.
An element p € R is prime if the principal ideal (p) is a prime ideal of R.

Example 2. Every prime element of a commutative ring is irreducible. In a UFD, the converse also holds.
Example 3. As an application of Gauss’s Lemma, we can prove that R[z] is a UFD when R is a UFD.
Spring 2016 Problem 1.

(a) Give an example of a unique factorization domain A that is not a PID. You need not show that A is a UFD
(assuming it is), but please show that your example is not a PID.

Let A := Z[x]. We know that A is a UFD via an application of Gauss’s Lemma. Let I := (2, ) and we claim
that I is not a principal ideal. We will first show that I is a proper ideal of A. For

1 =2a+ bz,

we would need b = 0. Then there are no possibilities for a since 1 ¢ 2Z. Thus 1 ¢ I and I is a proper ideal.

Assume I = (p) for some p € A. Then there is an r € A such that rp = 2. Since Z is an integral domain,
0 = deg(rp) = deg(r) + deg(p) so deg(p) = 0. Thus p € Z and the only integer divisors of 2 are £1,+2. Since
I is a proper ideal, p = +2. We note (2) = (—2) so take p = 2. Now there is some s € A such that sp = z.
However, 2s = x cannot occur. We conclude that I is not principal.

(b) Let R be a UFD. Let p be a prime ideal such that 0 # p and there is no prime ideal strictly between 0 and p.
Show that p is principal.

Let a € p be some nonzero element. Since R is a UFD, we can factor a as a product of irreducible elements
a= ]_[?:1 pf In a UFD, irreducible implies prime so each p; is prime in R. Since a € p and p is a prime ideal,
one of the p; € p. Thus (p;) < p. Since (p;) is a prime ideal, we must have (p;) = p and p is principal.

Spring 2019 Problem 3. Let d > 2 be a square-free integer. Show that the integer 2 in Z[+/—d] is irreducible
but the ideal (2) in Z[v/—d] is not a prime ideal.

Define the norm N : Z[v/—d] — Zx¢ as N(a + by/—d) = (a + by/—d)(a — by/—d) = a® + b*>d. We can show
algebraically that the norm is multiplicative. Further, we will show N(a + byv/—d) = 1 if and only if a + bv/—d is a
unit in Z[v/—1]. (=) Assume N(a + by/—d) = 1. Then (a + by/—d)(a — by/—d) = 1 and a + by/—d is a unit. (<)
Assume a + by/—d is a unit. Then there is some element a’ + b'v/—d for which (a + bv/—d)(a’ + b'v/—d) = 1. By
multiplicativity of the norm, N(a + bv/—d) divides N(1) = 1. We conclude that N(a + bv/—d) = 1.

We will first show that 2 is irreducible in Z[v/—d]. Let a+bv/—d be a non-unit factor of 2. Then N (a+by/—d) =
a® + b%d divides N(2) = 4. If N(a + bv/—d) = 1 or N(a + by/—d) = 4, the factorization of 2 includes a unit. Thus
N(a + by/—d) = 2 or a® + b?d = 2. Since d > 2, we must have b = 0. Then a?® = 2 for integer a, which is not
possible. No such non-trivial factor of 2 exists.

We will now show that (2) is not prime in Z[v/—d]. If d is even, 2 divides —d but 2 does not divide either factor
in —d = /—d-+/—d. If d is odd, 2 divides 1+ d but 2 does not divide either factor of 1 +d = (1 ++/—d)(1 —+/—d).
Thus (2) is not a prime ideal. Note that this argument proves that Z[v/—d] is not a UFD since irreducible and
prime are equivalent notions in a UFD.



Definition 10. Let I < R be an ideal of a commutative ring R. We define an equivalence relation a ~ b if and
only if a — b e I. The quotient ring R/I is the set of equivalence classes of R via ~ under the operations:

1) (a+I)+(b+1)=(a+b)+1,
(2) (a+I)(b+1)=ab+1.

Lemma (Ideal correspondence). Let R be a ring with ideal I < R. Then there is a one-to-one correspondence
between the ideals of R/I and the ideals of R containing I.

Theorem (Hilbert Nullstellensatz). Let F' be an algebraically closed field (e.g. C). Then the maximal ideals of
Flz1,...,z,] are of the form (z1 — ay,...,2, —ay,) for a; € F.

Fall 2019 Problem 3. Let I be the ideal (2% — y? + 22, (zy + 1)? — 2, 23) of R = C[z,y, z]. Find the maximal
ideals of R/I, as well as all of the points on the variety

V(I) = {(a,b,c) € C*: f(a,b,c) = 0 for all f e I}.

By ideal correspondence, the maximal ideals of R/I are in bijection with the ideals of R containing I. Hilbert
Nullstellensatz reveals that the maximal ideals of R are of the form (x — a,y — b,z — ¢) for a,b,c € C. Let m be a
maximal ideal. Since m contains 23, it must contain z. We reduce the other relations to 2> — y? and (ay + 1)2. If
m contains 2 — 52, then it contains either x — y or x + y. If m contains (zy + 1)2, then it contains 2y + 1. Case 1:
Assume m contains x — y. Multiply by —y to obtain —xy + y? in m. Then y? + 1 is in m so either y +i or y — 1 is
in m. Case 2: Assume m contains x + y. Then —zy — y? is in m and so is 1 — y?. Thus either y + 1 or y — 1 is in
m. The maximal ideals of R containing I are (x — 1,y +1,2), (x+ 1,y —1,2), (x — 4,y — ¢, 2), and (x + i,y + i, 2)
which correspond to the points (1,—1,0), (—1,1,0), (¢,4,0), and (—i, —i,0) in the variety.



for

(a)

Math 210B Discussion Week 2

Matthew Gherman

January 13, 2022

Spring 2015 Problem 4. Let M = 7Z [%] /Z and N = Q/Z, where Z [%] c Q is the subring generated by %
a prime p.
Show that M is an Artinian module but not a Noetherian module.

Let I, := (pik) be Z-submodules of M. If I, = Iyi1, then there is some r € Z such that Jr = pk%.
Equivalently, rp**? — p¥ = pF(rp — 1) = 0. Since Z is an integral domain, this cannot occur. We have an
ascending chain I; < Is ... that does not terminate so M is not Noetherian.

€ A for a€eZ
and ged(a,p) = 1. In this case, ged(a,p®) = 1 so there are integers £,m such that ma + ¢p¥ = 1. Then

m;ik = 1%;3”&' = # € A. Thus % € Aforall be Z and i < k. In other words, A = (#) Take a strict

descending chain A; > As o ... of Z-submodules of M. Then A; = (ﬁ) for some k € N. Then % ¢ A, for

Let A € M be a proper Z-submodule. Then there is a maximum k£ € N for which 1%

all natural numbers j > k. Thus Ay = (i) for ¢ < k. Continuing this argument, the descending chain must

terminate. Thus M is Artinian.

Show that N is neither Noetherian nor Artinian.

The counterexample in (a) proves that N is not Noetherian.

Order the prime numbers {p;};en. Define N; as the Z-submodule of N generated by {i, p'1+1 e } Since
the p; € Z are prime, p%l ¢ N; for each natural number ¢ > 2. Then we can construct a descending chain
N7 D Ny O ... that does not terminate. We conclude that N is not Artinian.

Fall 2015 Problem 3. Let k be a field and define A = k[X,Y]/(X?2, XY, Y?).

(a)

What are the principal ideals of A?

Let R be a commutative ring. We will prove that the sum of a unit r and a nilpotent element a is a unit. Let
a® = 0. To show the element r + a is a unit is equivalent to showing 1 + r~!a is a unit. Then

k—1

(1+r'a) (Z (—1)i(r_1a)i> =1+ (-1 ta)k = 1.
i=0

We conclude that r + a is a unit of R.

Take a polynomial with coefficients in k. We can reduce all terms of degree greater than or equal to 2. Thus a

general representative of an element of A is aX + bY + ¢ for a,b,c € k. Clearly (0) and (1) = A are principal

ideals. A non-trivial principal ideal will have some element aX + bY + c.

Case 1: Assume ¢ = 0. Then

(aX +bY)? = a®>X? + 2abXY + VY2 =0
in A so aX + bY is nilpotent for any choice of a,b € k. Each of (aX + bY) is a principal ideal for a,b € k.
Case 2: Assume ¢ # 0. Since c is a unit and aX + bY is nilpotent, the element a X + bY + ¢ is a unit of A.
Then (aX + bY +¢) = A.

Thus all principal ideals have one of the following forms {(0), 4, (aX +bY")} for a,b € k. We can further simplify
this by breaking into cases a = 0 and a # 0. If a = 0, we have (aX +bY) = (bY) =Y for b # 0. If a # 0,
then (aX + bY) = (X + a~'bY). All principal ideals have one of the following forms {(0), (X + ¢Y), (Y), A}
for ce k.



(b) What are the ideals of A?

Let I < A be a non-trivial, proper ideal. Then by part (a), I contains some aX + bY for a,b € k. If
I = (aX +bY), then we are in the case of part (a). Assume that (aX + bY") is not all of I. Then there is some
cx +dY in I that is not in (aX + bY). If a = 0, then b~1(bY) = Y € I. Since cX + dY was chosen so as not
to be contained in I, we have ¢ # 0. Then ¢ *((¢X +dY)—dY) = X €I and (X,Y) < I. A similar argument
holds if ¢ = 0.

Assume that @ # 0 and ¢ # 0. The elements X + a~'bY and X + ¢~ 'dY are contained in I so
(X +a Y) = (X +ctdY) = (a"'b—c )Y

is an element of I. Since cX + dY was chosen to not be in (aX +bY'), we conclude that a='b—c~'d # 0. Then
multiplying by its inverse in k, we obtain Y € I. Further, X € [ and (X,Y) < I.

Since A/(X,Y) ~ k is a field, we conclude that (X,Y) is a maximal ideal. Thus I proper implies I = (X,Y)
in the above cases. We conclude that the ideals of A are {(0), (X + c¢Y), (Y), (X,Y), A} for c€ k.

Fall 2020 Problem 8. Consider R = C[X,Y]/(X?2, XY). Determine the prime ideals P of R.

By the prime ideal correspondence, the prime ideals of R are in bijection with the prime ideals of C[X, Y] that
contain (X2, XY). Let p be a prime ideal of C[X,Y] that contains (X2, XY). Then X2 € p and p prime implies
(X) < p. The quotient C[X,Y]/p factors through C[Y]/p’ for some prime ideal p’ of C[Y]. Since C[Y] is a PID,
we conclude that p’ = (p(Y)) for an irreducible polynomial p(Y) € C[Y]. Thus p = (X) or p = (X,p(Y)). The

collection {(X), (X,p(Y))} is all the prime ideals of R for p(Y') irreducible in C[Y].

Spring 2016 Problem 3. Let R be a ring which is left Artinian (that is, Artinian with respect to left ideals).
Suppose that R is a domain, meaning that 1 # 0 in R and ab = 0 implies a = 0 or b = 0 in R. Show that R is a
division ring.

Let the ring homomorphism f : R — R be right multiplication by some nonzero a € R. Then f(b) = 0 implies
ba =0soa=0orb=0by R adomain. Since a # 0, we have b = 0 and f is injective. Note that this further
implies that f* is injective for all k € N. We have the chain of decreasing left R-modules,

im(f) o im(f?) >...

Since R is Artinian, the chain terminates so im(f*) = im(f**!) for some k € N. Let b € R be any element. Then
f¥(b) € im(f*) so there is some ¢ € R such that f**1(c) = f¥(b). Rearranging, f*(f(c) —b) = 0 and f(c) = b by
injectivity of f¥. We conclude that f is surjective. Then f(b) = 1 for some b € R which implies ba = 1. We have
shown that every nonzero element a € R has a left inverse b. Further, b has a left inverse, which we denote ¢ € R.
Then

a = (cb)a = c(ba) = ¢
and every nonzero a € R is invertible. We conclude R is a division ring.

Definition. We say that B is finitely generated as an A-algebra if each element b € B can be written as a polynomial
of elements {z1,...,2;} © B with coefficients in A.

Proposition. Let B be a finitely generated A-algebra. If A is Noetherian, then B is Noetherian.

Proof. Let {x1,...,xx} generate B as an A-algebra. Then there is a surjective ring homomorphism
v Alxy, ..., x,] — B.

Thus B is isomorphic to a quotient of A[z1,...,z,], a Noetherian ring by Hilbert Basis Theorem. We conclude
that B is Noetherian as a ring. O

Fall 2017 Problem 4. Let R be a commutative Noetherian ring and A a finitely generated R-algebra (not
necessarily commutative). Let B be an R-subalgebra of the center Z(A). Assume A is a finitely generated B-
module. Show that B is a finitely generated R-algebra.



Let {x1,..., 2y} generate A as a C-algebra and {y1,...,yn} generated A as a B-module. Then z; = Z;-L:l bijy;
and y;y; = Y.r_, bijkyk for some b;j,b;jr € B. Let By be the R-algebra generated by the set {b;;,b;;x}. Since R
is Noetherian and By is finitely generated as an R-algebra, By is Noetherian as a ring. Every element of C is a
polynomial in the z;, which we can write in terms of the y;. Then B < Z(A) and y;y; = >;_; bijryr allow us
to reduce this expression to a linear combination of the y; with coefficients in By. Thus A is a finitely generated
Byp-module, which implies A is a Noetherian Bp-module. Initially, B is an R-subalgebra of A and By < B so B has
the structure of a By-submodule of A. Thus B is finitely generated as a By-module and By is finitely generated as
an R-algebra so B is finitely generated as an R-algebra.

This proof is based on that of Proposition 7.8 in Atiyah MacDonald.
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Spring 2017 Problem 5. Let S be a multiplicatively closed subset of a commutative ring R. For a prime
ideal I in R with I n S = ¢J, show that the ideal I - S~'R in the localized ring S~'R is prime. Also, show that
sending I to I - S™'R gives a bijection between the prime ideals in R that do not meet S and the prime ideals in
the localized ring S™!R.

We will first prove that the ideals of 'R are in one-to-one correspondence with the ideals of R that are disjoint
from S. Let I — R be an ideal. Since I is a proper ideal R, S~'I = S™!'R implies I contains some element of S.
Thus S~'I is a proper subset of S™'R when I n S = 5. For %,% e S, we have % € S~I since ta +sbe I
and st € S. For | € S~IR and e S~'R, we have = S~ since ra € I and st € S. Given an ideal J < S™I'R,

define I := {ae R: ¢ e J}. If 2 e J, then $¢ = ¢ € J so I is the set of all numerators of J. If J < S™'R

is a proper ideal, then % ¢ Jsol¢lI and I is a proper subset of R. Now ra € [ for all a € I and r € R since
i1 =T €J. Fora,be I we have ¢ + % = “T*b € Jsoa+bel. We conclude that I < R is a proper ideal.

We want to show further that a prime ideal of R maps to a prime ideal of S™!'R for S a multiplicatively closed
subset of R\{0} with 1 € S under this correspondence. Let p € R be a prime ideal with %% = ‘S‘—? € S~'p. Then
ab e psoaeporbepsince p is prime. Thus $ € S~'p or % e S7'p and S~ 'p is a prime ideal of ST'R. Given a
prime ideal q = ST R, define the corresponding ideal p = {a € R : ¢ €q}. If abe p, then ab a4 b

S €qso {orqising.
We conclude that a or b is in p.

1

Spring 2016 Problem 4(a). Let A be a commutative ring, S a multiplicatively closed subset of A, A — S~1A
the localization. Which elements of A map to zero in S~1A?

An element a € A maps to ¢ € ST'A. If ¢ = 0, then there is some s € S such that sa = 0. Let Sa = {sa : s € S}
and 0 € Sa when a maps to 0. Conversely, an element a € A such that 0 € Sa maps to zero in the localization. If
S contains some zero divisor of A, then it will send some non-trivial element of A to zero in S~ A.

Fall 2015 Problem 2. Let R be a principal ideal domain with field of fractions K.

(a) Let S be a non-empty multiplicatively closed subset of R\{0}. Show that S~!R is a principal ideal domain.

Let J ¢ S7'R be an ideal. Then the ideal I — R of all numerators of J is principal. Let I = (a) for a € R.
Then we claim that J = (%). Certainly J > (%). Let £ € J. Then j = ra for some r € R and £% = % = L,

We conclude J = (%) and ST!'R is a principal ideal domain.

(b) Show that any subring of K containing R is S~ R for some multiplicatively closed subset S of R\{0}.

Let R < T c K be a subring. Define S := {s € R\{0} : L € T}. Since } € T we have 1 € S. Given s,t € S, we
have %% = ﬁ € T so st € S. Thus S is a multiplicatively closed subset of R and T > S™'R. Let ¢ e T and
we want to show ¢ € ST1R. We can assume ged(a, s) = 1 since R is a UFD. In the PID R, Bezout’s identity
implies there are elements k, ¢ € R such that ka + ¢s = 1. Thus 2 4 ££ — % = % €T so € STIR. We

1s sl

conclude T = S™!R for a multiplicatively closed set S of R\{0}.

Proposition. Let R be a ring and S a multiplicatively closed subset of R that does not contain 0. Let I be an
ideal of R. Then S~*R/S~!I is isomorphic to F_l(R/I) where S is the image of S in R/I.

Proof. Let T = S7'R/S~'I. Then define a ring homomorphism g : R — SR — T so that g(r) is the class of

7 in T. The kernel of g is I so g descends to a ring homomorphism g : R/I — T'. Further, the elements S map

to units in 7. By the universal property of localization, there is a unique homomorphism A : gil(R/I ) — T such

that g = ho f for f: R/I — gil(R/I) the usual inclusion. One can check that & is an isomorphism. O



Fall 2020 Problem 8. Consider R = C[X,Y]/(X?, XY). Determine the prime ideals P of R. Which of the
localizations Rp are integral domains?

By the prime ideal correspondence, the prime ideals of R are in bijection with the prime ideals of C[X, Y] that
contain (X2, XY). Let p be a prime ideal of C[X,Y] that contains (X2, XY). Then X2 € p and p prime implies
(X) < p. The quotient C[X,Y]/p factors through C[Y]/p’ for some prime ideal p’ of C[Y]. Since C[Y] is a PID,
we conclude that p’ = (p(Y)) for an irreducible polynomial p(Y) € C[Y]. Thus p = (X) or p = (X,p(Y)). The
collection {(X), (X, p(Y))} is all the prime ideals of R for p(Y) irreducible in C[Y].

Let I = (X2, XY) be an ideal of C[X,Y]. Since localization commutes with quotients, the ring R, for a prime
ideal p in R is isomorphic to STIC[X,Y]/S™!I for a multiplicatively closed set S « C[X,Y] for which the image
of Sin R is R\p. Assume Y ¢ p. Then Y is invertible in R,. We conclude that S71I = S71(X? XV) = (X) in
C[X,Y]. Then ST'C[X,Y]/S™I is isomorphic to a localization of the integral domain C[Y] so R, is an integral
domain. If Y € p, then p = (X,Y). The localization at the prime ideal p will not be an integral domain since X is

nilpotent.

Definition. The nilradical of a commutative ring R is the ideal of R containing all nilpotent elements of R.
Equivalently, the nilradical is the intersection of all prime ideals of R. There are analogues of the nilradical for
non-commutative rings, but the situation is more complicated.

Definition. The Jacobson radical is the set of all » € R such that M = 0 for all simple R-modules M. One can
show that the Jacobson radical is a two-sided ideal. The Jacobson radical of a commutative ring R is equivalently
the intersection of all maximal ideals of the ring R.

Fall 2015 Problem 9(b). Let R be a ring. Is an element in the Jacobson radical of R always nilpotent? Is a
nilpotent element of R always in the Jacobson radical? Justify your answers.

An element of the Jacobson radical is not always nilpotent. In commutative rings, the nilradical, the set of all
nilpotent elements, is the intersection of all prime ideals of the ring. The Jacobson radical is the intersection of all
maximal ideals of R. The ring Z[x] has maximal ideal (2,z). Let R = Z[x](24) be the localization of Z[x] with
S = Z[z]\(2,z). Then R is local with J(R) = S71(2,z). Note Z[x]/(2) ~ (Z/2Z)[x], which is an integral domain.
Thus (2) is a prime ideal of Z[z]. Similarly, Z[x]/(x) ~ Z is an integral domain and () is a prime ideal of Z[x]. By
the argument above, S~1(2) and S~!(z) are prime ideals of R. We see that S=1(2) n S~1(x) is strictly contained
in the Jacobson radical S~*(2, z). Take for instance 3% € J(R) but 2%£ is not nilpotent.

1
0 1

A nilpotent element is not always in the Jacobson radical of aring R. Let R = M3(C) and A := <0 0> € My(C).
It is clear that A? is the zero matrix so A is nilpotent. The matrix ring R has no non-trivial two-sided ideals so A
is a nilpotent element that is not in the Jacobson radical of R.

Spring 2019 Problem 9(a) Find a domain R and two nonzero elements a,b € R such that R is equal to the
intersection of the localizations R[1/a] and R[1/b] (in the quotient field of R) and aR + bR # R.

Let R = Z[z] with a = 2 and b = x. Then (2, ) is a proper ideal of R so 2R + xR # R. We want to show that
R = R[1/2] n R[1/z] in the quotient field. Let £ be in the intersection. Then L = % = % where we can assume
without loss of generality that the fractions are reduced. We have s(cz’ — d2*) = 0 in R which only has non-trivial

solutions when k = ¢ = 0 since R is an integral domain. Thus R = R[1/2] n R[1/z] as desired.

Spring 2020 Problem 3. Prove that a noetherian commutative ring A is a finite ring if the following two
conditions are satisfied:

(a) the nilradical of A vanishes,
(b) localization at every maximal ideal is a finite ring,.

Let p be a prime ideal of A. Let m be a maximal ideal of A for which p © m. We note that A/p and
the localization of A/p at m/p are integral domains. The localization (A/p)wm/, is isomorphic to Ay /pm so, by
assumption (b), (A/p)m/p is finite. A finite integral domain is a field so py is a maximal ideal of Ay. Since Ay, is
a local ring with unique maximal ideal m, we conclude that p = m and every prime ideal of A is maximal. Since A



is Noetherian, A will have finitely many minimal prime ideals. Each maximal ideal in A is also minimal so there
are finitely many maximal ideals of A.

Let n be the nilradical or the intersection of all prime ideals of A. By the above argument, n is equivalently the
intersection of all maximal ideals of A. In general, we can define a ring homomorphism f from A to [ [,.; A/m; by
f(a) = (a+m;)er for {m;};er the collection of all maximal ideals of A. The kernel of f is n so assumption (a) implies
f is injective. In our case, we can use Chinese Remainder Theorem to prove that the map is an isomorphism. Each
component A/m; is finite since (A/M;)m, /m, =~ Am,;/(M;)m, is isomorphic to A/m;. There are finitely many maximal
ideals m; so the codomain of f is finite. Thus A is finite.
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Proposition. Let R be a left Artinian ring. Then any injective R-module homomorphism is surjective.

Proof. Let f : M — N be an injective homomorphism of left R-modules. We can construct the descending
chain im(f) > im(f?) o ... of left R-modules. (Note that each im(f?) is finitely generated because they are
submodules of a finitely generated module over a left Noetherian ring R.) Then the descending chain terminates
and im(f*) = im(f**!) for some k. Take b € R. Then f¥(b) € im(f*) = im(f**!) so there is some c € R such that
fF¥*1(c) = f¥(b). Then f¥(b— f(c)) = 0 and f* injective implies b = f(c). Thus f is surjective. O

Spring 2015 Problem 3. Let R be a ring. Show that R is a division ring if and only if all R-modules are free.

(=) Assume that R is a division ring and let M be a left R-module. Let S be the set of all possible linearly
independent sets of M ordered by inclusion. The set S is not empty since the empty set is linearly independent. Let
{zi}ier, © {®i}ier, < ... be an increasing chain of elements of S. Then X := U;czl{xi}ielj is a linearly independent
set of M since any linear dependence occurs with the elements from some I;. By Zorn’s Lemma, there is a maximal
element {z;};cr of S. If {x;}er is a generating set, we are done.

Let z € M. Then {z;},cr U {z} is a linearly dependent set by maximality. For © = z;,, we have

k
Z Tixij =0
Jj=1

k
_ -1
r = —Ty mxij .
Jj=0

Thus z is in the span of {z;},c; and {x;};cs is a generating set of M. We conclude that all left R-modules are free.
We make the same argument for right R-modules.

(<) Assume that all R-modules are free. Thus all R-modules are projective and R is semisimple. Then R is
left Artinian. Right multiplication f : R — R by some a € R is a left R-module homomorphism. Since Ra is free
as a left R-module, f is an injective R-module homomorphism. By Proposition, f is a surjective left R-module
homomorphism. There is some b € R such that f(b) = ba = 1. We conclude that every element a € R has a left
inverse. Let ¢ be the left inverse of b. Then ¢ = ¢(ba) = (¢b)a = a and each element of R has an inverse. We
conclude R is a division ring.

for all r; # 0. Since R is a division ring,

Lemma (Nakayama’s Lemma). Let R be a commutative ring with identity. Let I be an ideal of R and M a
finitely-generated R-module. If TM = M, then there exists some r = 1 (mod I) such that »M = 0.

Corollary. Let R be a commutative ring with identity. Let M is a finitely-generated R-module with J(R) the
Jacobson radical of R. If J(R)M = M, then M = 0.

Proof. Nakayama’s Lemma implies that » — 1 is in the Jacobson radical. Thus r is invertible. O

Spring 2019 Problem 4. Let R be a commutative local ring and P a finitely generated projective R-module.
Prove that P is R-free.



Let {z; le be a minimal set of generators for P as an R-module. Then we have a surjection f : R¥ — P and
the short exact sequence
0 — ker(f) - RF - P — 0.

Since P is projective, the short exact sequence splits and R* ~ P @ ker(f). Let N = ker(f). We will show that N
is trivial.

Let m be the unique maximal ideal of R. Then M/mM is a vector space over R/m of the same dimension as
(R/m)*. Thus M /mM =~ (R/m)* as R/m-vector spaces and N = mN. Since R is a commutative local ring, the
Jacobson radical J(R) = m. By the second version of Nakayama’s Lemma, N = 0 as desired.

Spring 2020 Problem 10. Let R be a commutative ring and M a left R-module. Let f : M — M be a
surjective R-linear endomorphism. [Hint: Let R[X] act on M via f.]

(a) Suppose that M is finitely generated. Show that f is an isomorphism and that f~! can be described as a
polynomial in f.
Let R[X] act on M via X -m = f(m) and extend linearly. Let I = (X) < R[X]. Then f surjective gives

M = IM. Nakayama’s Lemma provides some r € R[X] for which r = 1 (mod (X)) and rM = 0. In other
words, 7 = 1 — Xp(X) for p(X) € R[X] and

r-m=20
(1= Xp(X))-m = 0
m = Xp(X) - -m.

We conclude that p(f) is the inverse of f.

(b) Show that this fails if M is not finitely generated.
Let M be the free module of countably many copies of R. Define f: M — M as

flri,racyrg, o) =(ra, ooy Thy -0 ).
Then f is surjective with kernel isomorphic to R.

Spring 2018 Problem 9. Let f : M — N and g : N — M be two R-linear homomorphisms of R-modules
such that idys — gf is invertible. Show that idy — fg is invertible as well and give a formula for its inverse. [Hint:
You may use Analysis to make a guess.]

Sinceidpr—gf : M — M is invertible, there is some R-module homomorphism ¢ : M — M such that c(idp—gf) =
idys = (idpsr — gf)e. Note that cgf = ¢ —idpy and gfc = ¢ — idy;. We claim the R-module homomorphism
idy + fcg: N — N is the inverse of idy — fg: N — N.

(idy + feg)(idny — fg) = idy — fg + feg — f(cgf)g
=idy — fg + feg — f(c —idm)g
=idy — fg+ feg— feg+ fg
=idy

idy + feg— fg— flgfc)g

=idy + feg — fg — f(c—idum)g

=idy + feg—fg— feg+g
=idy.

(idy — fg)(idy + feg)

Fall 2014 Problem 9. Let A be a ring and let i,7 € A such that i = ¢ and j2 = j. Show that the left
A-modules Ai and Aj are isomorphic if and only if there are a,b € A such that i = ab and j = ba.



(=) Assume Ai and Aj are isomorphic. Let ¢ : Ai — Aj be such an isomorphism with inverse ¢ : Aj — Ai. Then
#(i) = ¢j and ¥ (j) = di for some c¢,d € A. Note that ¢(i) = ¢(i%) = i¢(i) = icj and P(j) = ¥(j2) = jv(j) = jdi.
Let a :=icj and b := jdi. Then

ab = (icj)(jdi) = icjdi = icy(j) = ¢(icj) = P(¢(i)) = i
ba = (jdi)(icj) = jdicj = jd¢(i) = ¢(jdi) = ¢(¢(4)) = j

as desired.

(«) Assume i = ab and j = ba for some a,b € A. Then we can define a left A-module homomorphism
¢ Ai — Aj by ¢(i) = ia = aj. Extend ¢ A-linearly. We can also define an A-module homomorphism ¢ : Aj — Ai
by extending v (j) = jb = bi A-linearly. Let r € A. Then

D(o(ri)) = Y(ré(i)) = P(ria) = P(raj) = rap(j) = rajb = rabi = ri* = ri
¢(P(r7)) = o(r(j)) = é(rjb) = d(rbi) = rbo(i) = rbia = rbaj = rj* = rj.

We conclude that ¢ is an isomorphism.

Fall 2020 Problem 4. Let M be a left R-module. Show that M is a projective R-module if and only if there
exist m; € M and R-homomorphisms f; : M — R for each ¢ € I such that the sets {m; : i € I} and {f; : i € I}
satisfy:

(a) If me M, then f;(m) = 0 for all but finitely many i € I.
(b) If me M, then m = >, _; fi(m)m,;.

(=) Assume M is projective. Then M is a direct summand of a free R-module. There is a surjection g : Rl — M.
Define m; as g(e;) for (e;):esr the standard basis of RII. Further, define f; as the composition of the inclusion of
M into Rl and the projection onto the ith component.

(«<) The set {m; : i € I} is a generating set of M. There is a surjection g : Rl — M given by g(r;) = rim;
where 7; is an element of the ith component of Rl Define a splitting f : M — R/l as f(m) = (fi(m));. Then
flg(m)) = >,c; film)m; = m by assumption (b). Since M is a direct summand of a free R-module, M is projective.
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Definition 1. Let F be a field. A field extension E of F is a field for which F < E. We can view E as a vector
space over F' and the degree of F over F is [E : F] = dimp(E). A finite field extension is one in which the degree
is finite.

Definition 2. An algebraic field extension E of F is one for which any element a € F is the root of some polynomial
in F[z]. A field extension that is not algebraic is called transcendental.

Proposition. If E/F is a finite field extension, then it is algebraic.
Proposition. Let E/L/F be a tower of finite field extensions. Then [E : F| = [E : L][L : F].

Definition 3. Let K and L be two algebraic field extensions of F'. Then the product KL is defined as the smallest
field extension of F' containing both K and L.

Proposition. Let K and L be two finite field extensions of F. If [K : F| and [L : F] are relatively prime and
KnL=F, then [KL: F|=[K:F|[L:F].

Definition 4. Let E//F be an algebraic field extension. For some « € E, the minimal polynomial of « is the unique
monic irreducible polynomial p € F[z] of lowest degree for which « is a root.

Definition 5. Let E be a field. Then a non-constant f € F[z] splits if it factors into linear terms.

Let E be a field extension of F. We say that E is the splitting field of some f € F[X] if f splits in E[x] and
E = Flag,...,a,] for {a;} the roots of f. A field extension E/F is normal if E is the splitting field of some
polynomial f € F[x].

We say that f is separable if the linear factors of f in a splitting field are distinct. A separable field extension
E/F is one in which the minimal polynomial of each element « € F is separable.

Proposition. If F has char(F) = 0 or F is finite, then every algebraic field extension of F' is separable.

Definition 6. A Galois extension of F is the splitting field F of a separable polynomial f € F[z]. In other words,
the extension is normal and separable. The Galois group Gal(E/F') is the group of field automorphisms of E that
fix all elements of F.

Proposition. If E/F is a finite Galois extension, then |Gal(E/F)| = [E : F].

Theorem (Galois correspondence). Let E/F be a Galois extension. Let H be a subgroup of Gal(E/F). Define
EH to be the elements of E fixed by all automorphisms of H. There is a one-to-one correspondence between
subgroups of Gal(E/F) and intermediate fields E/L/F via H — EX. The correspondence is inclusion reversing
and |H| = [E : Ef]. Finally, E¥ is a normal extension of F if and only if H is a normal subgroup of Gal(E/F).

Fall 2014 Problem 3. Pick a non-zero rational number z. Determine all possibilities for the Galois group G
of the normal closure of Q[{/z] over Q, where /z is the root of X* — z with maximal degree over Q.

Note that char(Q) = 0 so all finite extensions of Q are separable.
Case 1: Assume z = y* for some y € Q, then the roots of X* — z are {+y, tyi}. A root of maximal degree is
yi, and Q[yi] = Q[i] is the splitting field of the irreducible polynomial X2 + 1 over Q. Thus Q[i]/Q is a Galois
extension of degree 2. The only group of order 2 is Z/2Z so

Gal(Q[i]/Q) ~ Z/2Z.



Case 2: Assume x = y2 for some y € Q and x # z* for all z € Q. Then the roots of X% — x are {1, TV}
for \/ye R and X* — 2 = (X? —y)(X? + y). The two polynomials X? —y and X? + y are irreducible over Q since
they do not have roots over Q. Thus all of the roots have degree 2 so we can take y/z = ,/y. Then Q[,/y] is the
splitting field of X? —y over Q and Q[,/y]/Q is Galois. Once again, the Galois group is order 2 so

Gal(Q[/y]/Q) ~ Z/27Z.

Case 3: Assume z = —y2 for some y € Q and z # z* for all z € Q. Then the roots of X* — x are {\/ygg} for &g

a primitive eighth root of unity and j = 1,3,5,7. Note that {g = g + z@ These roots are not rational so X% —
can only factor as a product of quadratics.
If 2y is the square of a rational number, then

(X — Vi) (X — VyEd) = X* = \/2yX +y
(X = VHE) (X — Vy&d) = X2 — /2yX +y
The normal closure K is a degree 2 extension of Q and
Gal(K/Q) ~ Z/27Z.

In all other cases, none of the possible pairings of roots yields a quadratic with coefficients in Q. Thus X* — x
is irreducible and the normal closure K is the splitting field of X* — 2. It is clear that K < Q[+/2y,i]. Continuing,

Vs = ‘/TTy + @z We see that 2¢/zés + &/z€s = /2y € K. Then %(«/23}{*/558 — %) =1ie K as well. We conclude
K = Q[+/2y,i]. Note the polynomials X2 — 2y and X2 + 1 are irreducible so Q[+/2y]/Q and Q[i]/Q are degree 2
Galois extensions with Q[+/2y] n Q[i] = Q since Q[+/2y] = R. Then

Gal(K/Q) ~ Gal(Q[+/2y]/Q) x Gal(Q[i]/Q) ~ Z/2Z x Z/2Z.

Case 4: Assume z # y2 for all y € Q and = > 0. The roots are {£/z, £/zi} where we take /= to be the
real fourth root of z. By assumption, X% — 2 has no roots in Q. None of the possible pairings of (z — a) for a a
root of X% — x gives a quadratic with coefficients in Q. Thus X* — x is irreducible and all the roots have degree
4, justifying the choice of /z as the real fourth root. Let K be the normal closure of Q[+/x]/Q. Since X* — z is
irreducible, K will be the splitting field of X* — 2. We note that K < Q[/z,] since X* — z splits in Q[+/x,1].
Additionally, /z € K and 2 (¢/2)*({/zi) = i€ K so K = Q[/,i].

We build the tower of field extensions below. We know that [Q[¢/z] : Q] = 4 and [Q[i] : Q] = 2. Since
Q[¢/z] € R, we have Q[¥/x] n Q[i] = Q and [Q[¥/x,i] : Q] = 8, as a result. Note that Q[/z]/Q is not a normal
extension so Q[/z,4]/Q is not an abelian extension. Thus Gal(Q[+/z,]/Q) is a non-abelian group of order 8. This
leaves the quaternion group or the dihedral group.

QLY.
/ \
Ql¢7)
\ Qi
Q /

Complex conjugation 7 is an order 2 automorphism. In both D4 and Qg, there is an element of order 4. Let
o € Gal(K/Q) be such an element. If o(&/z) = —¥/z, then o(/xi) = xi or o(Vwi) = —/xi. In either case,
o? is the identity, a contradiction. Thus o(3/r) = ++/xi. The argument will work for either choice so assume

o(Vz) = Yxi. We see that o7(Vz) = o(¥z) = Yai and 7o(Yx) = 7(Y2i) = —Yzi. Thus o and 7 do not

commute. The order 2 element —1 in the quaternion group commutes with the order 4 elements. We conclude

Gal(Q[V/z,i]/Q) =~ Dj.

Case 5: Assume z # y? for all y € Q and < 0. Let z = |x|. Then the roots of X% — z are {/2£L} for /2
the real fourth root and ¢ € {1,3,5,7}. The roots are not contained in Q and none of the possible pairings of roots



yields a quadratic with coefficients in Q. Thus X* — x is irreducible and the normal closure K is the splitting field
of X* —x. Tt is clear that K < Q[v/4z,1] since /2¢s = {‘/E(g + gz) But, ¢/z2€s + /28] = {/2V2 = Viz e K
and /z&8 + /263 = /2V/2i = V/4zi € K. Then (14)(v/4z)3(V/4zi) = i € K. We conclude that K = Q[v/4z,1].
This is Case 4 since 4z € Q so

Gal(K/Q) ~ D,.
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Definition 1. The following are equivalent definitions of a Dedekind domain.

(a) A Dedekind domain is an integral domain in which each non-zero proper ideal factors into a product of prime
ideals. This factorization can be shown to be unique up to reordering of the factors.

(b) A Dedekind domain is an integrally closed, Noetherian domain in which each prime ideal is maximal.
(¢) A Dedekind domain is Noetherian and the localization at each maximal ideal is a DVR.
Proposition. A Dedekind domain is a PID if and only if it is a UFD.

Proof. We need only prove that every ideal in a Dedekind domain R with unique factorization is principal. Further,
unique factorization of prime ideals means it is sufficient to prove each prime ideal is principal. Let p be a non-zero
prime ideal of R with a € p. Let a = p;---pg be a unique factorization of a into prime elements of R. Then
p divides (a) = (p1)---(pr) so p contains some prime ideal (p;). Since R has dimension one, p = (p;) and p is
principal. O

Example 1. The ring R = R[z,y]/(2% + y? — 1) is a Dedekind domain that is not a PID and, thus, not a UFD.

Definition 2. Let R be an integral domain and K its field of fractions. A fractional ideal is an R-submodule of
K for which there is some r € R such that rI < R. We think of r as clearing denominators in I.

Definition 3. A fractional ideal I of R is invertible if there is another fractional ideal J of R for which IJ = R.

Definition 4. A Dedekind domain is, equivalently, an integral domain for which each fractional ideal is invertible.
The inverse of a fractional ideal I is given by {x € K : I < R}.

Spring 2017 Problem 4. Show that the ring R = C[x,y]/(y*> — 22+ 1) is a Dedekind domain. (Hint: Compare
R with the subring C[z].)

The ring R is a quotient of the Noetherian ring C[z, y] so R is Noetherian. The polynomial y? —z? + 1 would have
to factor in C[x,y] as a product of two degree one polynomials in y. By inspection, the polynomial is irreducible
in C[z,y]. Thus (y?> — 23 + 1) is a prime ideal in C[z,y] so R is an integral domain. Further, C[z,y] has Krull
dimension two so, by the prime ideal correspondence, R has Krull dimension one.

It is thus sufficient to show that R is the integral closure of the subring C[z] in the fraction field of R, which
is K = C(x)[y]/(y? — (2 — 1)). Let a € C(2)[y]/(y* — (* — 1)) be integral over C[x]. The set {1,y} is a basis
for C(x)[y]/(y? — (23 — 1)) as a C(x)-vector space. Thus o = p + qy for p,q € C(z). If ¢ = 0, a € C[z] < R so
we may assume ¢ # 0. Let m = T? — 2pT + (p? + ¢*(z® — 1)) € C(z)[T] be the minimal polynomial of « over
C(x). Since C[xz] is a UFD, Gauss’s Lemma implies that m € C[z][T]. Then 2p € C[z] gives p € C[z]. Since
p? +¢* (23 —1) € C[z], we have ¢?(x® — 1) € C[x]. From 23 — 1 square-free in C[z], we conclude q € C[z] and « € R.
Therefore, R is the integral closure of C[z] in C(z)[y]/(y* — (* — 1)), which implies R is a Dedekind domain.

Spring 2018 Problem 10. By one definition, a Dedekind domain is a commutative Noetherian integral domain
R, integrally closed in its fraction field, such that R is not a field and every nonzero prime ideal in R is maximal.
Let R be a Dedekind domain, and let S be a multiplicatively closed subset of R. Show that the localization S™'R
is either the zero ring, a field, or a Dedekind domain.



If 0 € S, then S™!R is the zero ring. If S = R\{0}, then S~ R is a field. Assume 0 ¢ S and S # S\{0}. It is clear
that SR is a commutative integral domain since R is an integral domain. There is a bijective correspondence
between the ideals of p — R that intersect trivially with S and the ideals of S~'p < S™!R. Let

SthcS L.
be an increasing chain of ideals in S~'R. Then I; ¢ I, ... is an increasing chain of ideals in R for
I = {reR:;eS_lfj},

the ideal of numerators in Sflfj. Since R is Noetherian, the chain terminates so I, = I, ; for all i € N. As a result
S~ = S, for all i € N and the chain in S~'R terminates. We conclude that S~'R is Noetherian.
We have a correspondence between prime ideals p © R that do not intersect S and prime ideals S~'p < S™'R.
Take a chain of prime ideals
0c S 'prcStpyc...

which corresponds to a chain of prime ideals 0 € p; < po < ... of R. Each non-zero prime ideal of R is maximal
sop; = pp for all i e N. Thus S~ 'p; = S~ 'p; for all i e N. We conclude that each non-zero prime ideal of S™'R is
maximal.

We will show that S~ R is integrally closed in its fraction field. Let K be the fraction field of R and S™'R is
a subring of K. Let £ € K be integral over S™'R. If £ € R, then £ € S™'R so assume Z ¢ R. There is a monic
polynomial f = 2™ + a,—12" ' + -+ + ap € (ST'R)[z] such that f(£) = 0. Each a; = i forr; € Rand s; € S.

Define ¢ := [} si € S so
T\ Tp_1 T\ 1 T
0=<7) + "1<7) +...4 0
S Sp—1 \S S0

=" (C)n + t”rn;l (i)nil 4+ .+ t"@
s Spn—1 \S

tr\" trag (" t"r
s Sn—1 S S0
Note that % € R by the choice of t € S. Thus  is a root of a monic polynomial in R[xz]. Since R is integrally

closed, %T € R. Then ; = TT/ € S7!R for some 7’ € R. We conclude that S~!R is integrally closed in K. As a result,

S~1Ris a Dedekind domain.

Fall 2020 Problem 7(a). Let R be a Dedekind domain with quotient field K and I a non-zero ideal in R.
Show that every ideal in R/I is a principal ideal.

Since R is a Dedekind domain, there is a unique factorization of I into prime ideals given by I = p’fl coophm
Then the Chinese Remainder Theorem implies

R/I ~ @ \R/p;i ~ @ Ry, /pl" Ry,

Each prime ideal is maximal in R so Ry, is a DVR and, thus, a PID. The quotient of a PID by an ideal will remain
a principal ideal ring via the ideal correspondence. Thus R/I is isomorphic to the direct sum of principal ideal
rings, which implies R/I is a principal ideal ring.

Spring 2016 Problem 3. Let A be an integral domain with field of fractions F. For an A-ideal a, prove that
a is an A-projective ideal finitely generated over A if there exists an A-submodule b of F' such that ab = A, where
ab is an A-submodule of F' generated by ab for all a € a and b € b.

We will first show that a is a finitely generated ideal of A. Since ab = A, there is a finite sum )" | a;b; = 1 for
a;€aand b; €b. Let a€ A, then a = a(}]_; a;b;) = X, a;(ab;). Since ab = A, we have ab; € A for all 1 <i < n.
Thus {a;}!"_, is a generating set of A as an A-module.

Now we will show that a is a projective ideal of A. Since a is finitely generated by {a;}?_,, there is a short exact
sequence

0 —— ker(f) A L 0




with f(e;) = a; for {e;}~ the standard generating set of A™. Define the A-module homomorphism h : a — A™ by
h(a) = X1 (abie;). Then f(h(a)) = fF(Xi_,(abie;)) = D1, ab;if(e;) = > abja; = a. We conclude that h is a
splitting and A™ ~ a @ ker(f). Since a is a direct summand of a free A-module, a is a projective A-module.



(a)

(b)
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Spring 2016 Problem 10.

Determine the Galois group of the polynomial X4 — 2 over Q, as a subgroup of a permutation group. Also,
give generators and relations for this group.

See Fall 2014 Problem 3 Case 4.

Determine the Galois group of the polynomial X? — 3X — 1 over Q. (Hint: for polynomials of the form
X3+ aX +b, the quantity A = —4a® — 27b%, known as the discriminant, plays a key theoretical role.) Explain
your answer.

Let K be the splitting field of an irreducible polynomial in F[z] with roots {a1,...,a,}. Define
6= J(ai—ay),
1<j

and the discriminant A := 2. For o € Gal(f), o(§) = sign(c)é so o(A) = A for all o € Gal(f). Thus A € F,
and each o € Gal(f) such that o(d) = § must be an even permutation of the roots of f. If 6 € F', then Gal(f)
must be a subgroup of A,.

For a degree 3 polynomial, there will be at least one real root. The other roots could both be real or could be
a conjugate pair of complex roots. Let the roots of f be {x,a + bi,a — bi} for a,b, z € R, then

§=(x— (a+0bi))(z—(a—0bi))(a+bi—(a—0bi))=2bi(z? — 2z + (a® + b?)).

Note A = 62 < 0 for b # 0. In this problem, A = —4a3 — 270? = —4(—3)3 — 27(—1)? = 81 > 0 so the roots of
[ are real. Since A = 92, we have § € Q. By above, Gal(f) embeds in Az, and |Gal(f)| < |A3] = 3. By the
rational root test, f is irreducible over Q. Then [F[a] : F] = 3 = |Gal(f)| = |As]| for some o € R a root of f.
We conclude Gal(f) ~ As.

Proposition. A polynomial p € F[z] is separable if and only if it is relatively prime to its formal derivative.

(a)

(b)

Fall 2017 Problem 7.
Show that there is at most one extension F'(a) of a field F such that a* € F, a? ¢ F, and F(a) = F(a?).

We have that « is a root of f := 2* — a* € F[z] and o2 is a root of the irreducible polynomial #? — a*. Thus
[F[a?]: F] = 2.

Assume first that char(F) = 2. Then z* — a* = 2% + o = (z + a)*. Since [F[a] : F] = [F[a?] : F] = 2, the
minimal polynomial of o must be (z + «)?, which implies a? € F, a contradiction.

Assume char(F) # 2. Then f' = 4x3 # 0, which is relatively prime to f. Then f is separable with roots
{£a, +ag} for €2 = —1. We have two cases for the minimal polynomial of «, denoted m,, € F[xz]. If m, =
(r — a)(z + a), then o? € F, a contradiction. If m,, = (z + a)(z + af), then a?¢ € F. Note ¢ € F would imply
a?e Fso&¢F. But a?(a?¢) = a*¢ e F[a?] = Fla] so £ € F[a]. We have the tower of fields F[a]/F[¢]/F
with [F[a] : F] = 2. Since £ ¢ F, we conclude F[a] = F[£]. Therefore, there is at most one field extension like
F[a] since it would equal F[£].

Find the isomorphism class of the Galois group of the splitting field of z* — a for a € Q with a ¢ +Q2.

By Fall 2014 Problem 3 Case 4, we have G ~ D, for a > 0 and, by Fall 2014 Problem 3 Case 5, we have
G ~ D, for a <0.

Proposition (Eisenstein’s Criterion). Let f € Z[x] with f = a,z™ + --- 4+ a¢. If there exists a prime p € Z for
which p divides a; for 0 < i < n, p does not divide a,,, and p? does not divide ag, then f is irreducible in Q[x].

Fall 2016 Problem 7. Let f € Q[X] and £ € C a root of unity. Show that f(&) # 2V/4.



We will assume that f(¢) = 21/4 for some f € Q[X] and draw a contradiction. We know that Q[¢]/Q is a Galois
extension with Gal(Q[£]/Q) ~ (Z/nZ)* for £ a primitive nth root of unity. In particular, Gal(Q[£]/Q) is abelian so
Q[¢]/Q is an abelian Galois extension. By assumption f(¢) = 2'/% so 21/4 € Q[¢] and Q[2/4]/Q is a subextension
of Q[¢]/Q. By the Galois correspondence, Q[2Y/4] = (Q[¢])¥ for some subgroup H < Gal(Q[¢]/Q) and Q[2'/4]/Q
should be a normal extension since any subgroup of an abelian group is normal. The minimal polynomial of 2%/4
over Q is 2* — 2 which is irreducible by Eisenstein’s Criterion. But #* — 2 does not split in Q[2'/4] so Q[2'/4]/Q is
not a Galois extension, contradicting our assumption. We conclude that f(£) # 24 for all f e Q[X].
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Theorem (Primitive Element Theorem). There are two common formulations of the result. Result (b) implies (a)
via the Galois correspondence.

(a) Every separable field extension of finite degree has the form F(3)/F for some 3. The element § is known as a
primitive element.

(b) A finite field extension is separable if and only if there exist finitely many intermediate field extensions.

Fall 2018 Problem 3. Let K/F be a finite extension of fields. Suppose that there exist finitely many
intermediate fields K/E/F. Show that K = F(x) for some z € K.

If I is a finite field, then K is also a finite field of the same characteristic. We know K> is cyclic so K = F(x)
for some x € K.

Assume F' is not finite. Let «, § € K. By assumption, there are only a finite number of distinct fields F'(« + ¢/3)
for all c € F. Since F is infinite, there are ¢, co € F with ¢; # ¢p such that F := F(a + ¢18) = F(a + ¢38). Thus
(c1 —c2)B € E and B € E. Further, a € E and the field F(«, 3) can be generated by one element. By an inductive
argument, for £ = F(ay,...,q,) there are corresponding cy, ..., ¢, such that F = F(a; + coaa + -+ + cpay,).
Since K/F is a finite field extension, K = F(aq,...,a,) so K = F(z) for some z € K.

This proof is based on that of the Primitive Element Theorem found in Lang Section 5.4.

Spring 2015 Problem 6. Let K < L be subfields of C and let p be a prime. Assume K contains a non-trivial
p-th root of unity. Show that L/K is a degree p Galois extension if and only if there is an element a € K that does
not admit a p-th root, such that L = K(¥/a).

(=) Assume that L/K is a degree p Galois extension. Let G := Gal(L/K). Then G is cyclic, generated by some
o € G. Let £ be a primitive p-th root of unity. Since some primitive p-th root of unity is contained in K, we have
all primitive p-th roots of unity in K. Thus £ € K and o(¢) = £. Since L/K is separable, the Primitive Element
Theorem implies L = K[f] for some S in the algebraic closure of K. Define a := Zf;ol a'(B)EP~%. Then

ola)=0 (Z_: ai(ﬁ)gi’i> = i (B (&P = i o (B)ePT = Z o (8P~ = ag
i=0 i=0 i=0 i-1

o(a”) = o(@)? = (a€)? = a’¢¥ = of

shows that o ¢ K. Additionally G is cyclic so a? is fixed by G and of € K. Define a := aP € K. Then the splitting
field M := K[a] of 2P — a is a subfield of L that strictly contains K. Then [M : K| # 1 divides [L : K] = p so
[M : K] = p. We conclude that L = M = K[¥a].

(<) Assume there is an element a € K that does not admit a p-th root and L = K(4/a). Then L is the splitting
field of 2P — a over K. The roots of 2P — a are {{/a&’} for £ a primitive p-th root of unity and 0 < i < p — 1.
Since char(K) = 0, K is a perfect field. Then L/K is separable and, thus, Galois. Note {/a ¢ K so there is some
o € Gal(L/K) that does not fix {/a. The image of ¢/a is a root which gives o({/a) = ¢/a&’ for some 1 <i <p—1.
We have oP(/a) = {/a and o7 (g/a) # {/a for all 1 < j < p — 1 since p is prime. The order of ¢ must be at least
p. However, L/F Galois implies p < |Gal(L/F)| = [L: F] = [K(%/a) : K] <p. Thus [L: K] = p.

Spring 2016 Problem 7. Show that for every positive integer n, there exists a cyclic extension of Q of degree
n which is contained in R.



By Dirichlet’s Theorem, there is some odd prime integer p such that p =1 (mod 2n). Let £ be a primitive pth
root of unity. We know that Q[¢]/Q is a Galois extension with [Q[€] : Q] = ¢(p) =p —1 for ¢ : Z — Z Euler’s
totient function. The Galois group G := Gal(Q[¢]/Q) ~ (Z/pZ)* ~ Z/(p — 1)Z is cyclic. Complex conjugation
7 : Q€] — Q[€] is an order two Q-automorphism of Q[¢]. Let H be the order two subgroup of G generated by
7 and K := Q[¢]”. We have K < R since K is fixed by complex conjugation. (For a more explicit description,
K = Q[¢ + ¢7'].) Then Galois correspondence implies Q[¢]/K is Galois with [Q[¢] : K] = 2. As a result,
[K : Q] = p—gl = kn for some positive integer k. Since Q[£]/Q is cyclic, H is a normal subgroup of G so K/Q
is Galois with Gal(K/Q) ~ G/H. The group G/H is cyclic so K/Q is a cyclic extension of Q of degree kn with
K < R. The fixed field of the unique subgroup of order k in Gal(K/Q) is the desired cyclic degree n extension.

Fall 2016 Problem 5. Let f € F[X] be an irreducible separable polynomial of prime degree over a field F' and
let K/F be a splitting field of f. Prove that there is an element in the Galois group of K/F permuting cyclically
all roots of f in K.

Note that K/F is a Galois extension since f is separable and K is the splitting field of f. Let oo € K be a root of
f. Then F[a]/F is a field extension with [F[a] : F] = p since f is irreducible. Then K/F[a]/F is a tower of field
extensions so [F[a] : F] = p divides [K : F]. Now |Gal(K/F)| = [K : F] since K/F is a finite Galois extension of
F. Thus p||Gal(K/F)| and Cauchy’s Theorem implies there is some element ¢ € Gal(K/F) of order p. We know
o permutes the roots of f, of which there are p, so 0 must permute the roots cyclically. Alternatively, embed the
Galois group into the symmetric group S,. The order p elements are p-cycles.

Spring 2016 Problem 6. Let K be a field of characteristic p > 0. For an element a € K, show that the
polynomial P(X) = X? — X + a is irreducible over K if and only if it has no root in K. Show also that, if P is
irreducible, then any root of it generates a cyclic extension of K of degree p.

(=) We will prove the contrapositive. Assume P has a root @ € K. We can immediately conclude that P is not
irreducible in K since P = (X — a)g for some g € K[X].
(<) We will prove the contrapositive. Assume P is reducible so P = Hf=1 g; for irreducible g; € K[X] with
deg(g;) < p. Let a € K be a root of g := g;. Then « is a root of P and o? — a 4+ a = 0. Since K is a field of
characteristic p, we have F,, ¢ K for IF,, the field of p elements. Let k € F,. Then

(a+ k)P —(a+k)+a=P+kP —a—k+a=a’+k—a—-k+a=a’—a+a=0.

We conclude that the set of roots of P is {a + k : k € F,} < K[«], which implies P is separable over K. Further,
K|[a] is the splitting field of P so K[a]/K is a Galois extension. Let G := Gal(K[«]/K) and take ¢ € G. Then
o(a) = a+ k for k € F,. We see that o°(a) = a + kf. Then k¢ = 0 in F, implies k¥ = 0 in F, or p|¢ = 0 in Z.
In the latter case, the order of o is at least p. Since oP(a) = «, we have that the order of ¢ is p. Then |G| = p,
contradicting our assumption that deg(g) < p. We conclude o(a) = o and g = X — «, which implies P has a root
in K.

Assume P is irreducible. Let a € K be a root of P. By above, the roots of the separable polynomial P are
{a+k:keF,} so P splits in K[o]. Then K[a]/K is Galois with [K[«] : K] = p. The Galois group Gal(K[a]/K)
is order p and, thus, cyclic. We conclude that any root of P generates a cyclic extension of K of degree p.

The polynomial in question is an example of an Artin-Schreier polynomial.

Proposition. Let L and M be field extensions of K. If L is a Galois extension of K, then the following are
equivalent:

(a) L and M are linearly disjoint over K

(b LnM=K

(¢) The restriction map Gal(LM /M) — Gal(L/K) is an isomorphism.
Spring 2018 Problem 2. Let ¢° =1 and ¢3 # 1 with ( € C.

(a) Show that /3 ¢ Q(C).

For the sake of contradiction, assume that /3 € Q(¢). Note that ¢ is a primitive ninth root of unity. Then
Q(¢)/Q is a Galois extension with Gal(Q(¢)/Q) ~ (Z/9Z)*. In particular, Gal(Q(¢)/Q) is abelian. The



polynomial f = 23 — 3 is irreducible over Q by Eisenstein’s criterion with roots {{/3¢% 2, for /3 eR. Thus
Q(¥/3) = R is not the splitting field of f, the minimal polynomial of /3. Since Q(¢)/Q is abelian, Q(¥/3)/Q
is a normal extension, a contradiction. We conclude that /3 ¢ Q(().

If o® = 3, show that « is not a cube in Q(¢, a).

Assume that 8% = o and 8 € Q((,a) for the sake of contradiction. Then Q((,«) is the splitting field of
mg = 2° — 3 over Q. By Eisenstein’s Criterion, mg is irreducible in Q[z] so [Q(8) : Q] = 9. Since Q is perfect,
Q(¢,)/Q is a Galois extension. We build the tower of fields below. Since Q(«) N Q(¢) is a subfield of a degree
3 extension Q(a)/Q, either Q(a) n Q(C) = Q(a) or Q(a) NQ(C) = Q. By (), Q(a) A Q(C) = Q. Since Q(()/Q
Galois, the above Proposition implies Q(«) and Q(¢) are linearly disjoint. Thus the degree of their compositum
over Q is

[Q(¢ @) : Q] = [Q(a) : QI[Q(¢) : Q] = 18.

Further, Q(«, ¢)/Q(«) is Galois and the restriction map from Gal(Q(«, ¢)/Q(«)) to Gal(Q(¢)/Q) is an isomor-
phism. As before, Gal(Q(¢)/Q) is abelian so Q(3)/Q(«) must be a Galois extension. The polynomial g = 23—«
has no roots in Q(«) and, as a degree 3 polynomial, is irreducible over Q(«). With g the minimal polynomial
of B over Q(a) and Q(B)/Q(a) Galois, g must split in Q(3). Thus the roots {3¢*}2_, of g are elements of
Q(B). Proceeding,

¢* = B*(B¢%) € Q(B)

so Q(¢?) is a subfield of Q(B). However, [Q(B) : Q] = 9 and [Q(¢3) : Q] = ¢(3) = 2 for  Euler’s totient
function, a contradiction. Therefore, a does not have a third root in Q(¢, ).

Q(¢, @)

7

Q(5)
3 Q(¢)
Q(e)
6
%)

S Q¢
2
Q



Math 210B Discussion Week &

Matthew Gherman

February 24, 2022

Theorem (Isomorphism extension). Let L/K/F be a tower of algebraic field extensions. For every automorphism
o : K — K, there is an automorphism & : L — L such that 7| = o.

Spring 2017 Problem 10. Let K/F be a (finite) Galois field extension with G = Gal(K/F) and let H ¢ G
be a subgroup. Determine in terms of H and G the group Gal(K*/F) of all field automorphisms of K over F.

Take an element o € G. We want to show that o|xr € Aut(K/F) if and only if 0 € Ng(H). (=) Assume
olgn € Aut(K7/F) so o(KH") « KH. Let he H and x € K. Then

(cho™")(z) = o(h(e™ (@) = o(0™ () ==

since o71(z) € K. We note cho™! fixes all z € K so cho~! € H. Thus o € Ng(H). (<) We will prove the
contrapositive. Assume o|gn ¢ Aut(KH /F). Then there is some y € K for which o(y) = z ¢ K. Thus there is
some h € H such that h(z) # z so o7 (h(co(y))) = o7 (h(2)) # y. As aresult, o(h(c™1(x))) ¢ H and o ¢ Ng(H).

The above result allows us to define the restriction homomorphism 7 : Ng(H) — Aut(KH /F) by r(0) = o|xn.
By the Isomorphism Extension Theorem, r is surjective. It is clear that H < ker(r) since h € H fixes all elements
of K. Take o € ker(r) so o fixes each x € K. Then the subgroup I G generated by o satisfies K! > K. This
implies I = H and o € H. We conclude that ker(f) = H and Aut(K¥ /F) ~ Ng(H)/H by the First Isomorphism
Theorem.

Fall 2017 Problem 8. Let F be a field, and let f,g € F[z]\{0} be relatively prime and not both constant.
Show that F'(x) has finite degree d = max(deg(f), deg(g)) over its subfield F (5) (Hint: If the degree were less
;

than d, show that there exists a nonzero polynomial with coefficients in F[x] of degree less than d having 5 asa

root.)

Note that g is a root of the irreducible polynomial p = gy — f for p € (F[z])[y]. Since f and g are relatively
prime, p is primitive. The polynomial ¢ = gg(T) — f(T) € <F (5)) [T] is degree d and has x as a root. Thus
[F(x) : F (g)] < d and F(x) is a finite extension of F (%) Let m = apT* + ap_1T* 1 + -+ + ag be the
minimal polynomial of z over F g . By clearing denominators, we may assume that each a; € F [ﬂ Then

n n—1
m = b, (5) + b1 (5) + -+ by for b; € F[T]. Replace the variable T with x in each b; to obtain
M = byy™ + by_1y" Lo+ + by in (F[z])[y] with 5 as a root. Thus p divides M in (F[x])[y]. Since p is primitve,

g divides b, and f divides by. We have deg(b,) = deg(g) and deg(by) = deg(f) so deg(m) = d. Therefore,
[F(a:) P (i)] =d.
g

Fall 2015 Problem 4. Let K be a field and let L be the field K(X) of rational functions over K.

(a) Show that there are two unique K-automorphisms f and g of the field L = K(X) such that f(X) = X! and
g(X) =1—X. Let G be the subgroup of the group of K-automorphisms of L generated by f and g. Show
that |G| > 3.

We define f : L — Las f(k) = kfor ke K and f(X) = X~!. Then extend f to a K-homomorphism. Similarly,
g: L — Lis defined as g(k) = k for k€ K and g(X) =1— X. Then we extend g to a K-homomorphism. We

will now show that f and g are automorphisms of L. Since L is a field, f and ¢ are injective. Take % €L



—1 —1
for p(X),q(X) € K[X]. Then f(gg,l;) = fcgg,lgg = %. Thus f is a K-automorphism. Similarly,

g (p(l_X)) = 2X) o, g is a K-automorphism.

q(1-X) q(X)
Note that f # g via the image of X. Then G contains at least {e, f, g} where e is the identity K-automorphism.
9F(X) = (X ) =
1-X
_ X -1
f9(X)=f1-X)=1-X ! - T x
If ﬁ = %, then % = 0 and X would be algebraic over K, a contradiction. Thus gf # fg as

K-automorphisms. A similar argument shows that both ¢gf and fg are distinct from e, f, and g. Thus G
contains at least {e, f, g, fg,9f} and |G| > 3.

It will be important later to show that |G| > 6.

1 1 X
fgf(X):f<1—X>:1—X—1 X1

A similar argument to above shows that fgf is distinct from e, f, g, fg, and gf. Thus |G| = 6.

(b) Let E = L. Show that P = S5 e b,

We want to show that P is fixed under f and g action.

AP -X )Y (X oxt e (RSP - X+ X2

f(pP) = JAX-1P) XX Toap X T XX =P
g(X?2-X+1)3) (1-X)2-(1-X)+1 (X?2-X+1)3
W= ex -y 0 a-x0exr . xx-p
Thus P e LC.

(¢) Show that L/K(P) is a finite extension of degree 6.

We construct a polynomial with coefficients in K (P) for which X is a root. Define
p(T):= (T? =T + 1) — P(T*(T — 1)%)

for p(T) € K(P)[T] so p(X) = 0. Since p is degree 6, [L : K(P)] < 6. Note that P € L% by (b) so
K(P) c LY < L. By the final argument of (a), we have 6 < [L : LY] < [L : K(P)] < 6. Therefore, L/K(P) is
a finite extension of degree 6.

(d) Deduce that E = K(P) and that G is isomorphic to the symmetric group Ss.

The chain of inequalities in (c) implies [L : L] = 6. By Galois correspondence, L/LY is a Galois extension
with Galois group Gal(L/LY) ~ G. The finite Galois extension satisfies |G| = [L : LY] = 6. By (a), it is clear
that G is not abelian. The only non-abelian group of order 6 is Ss.

Fall 2018 Problem 4. Let K be a subfield of the real numbers and f an irreducible degree 4 polynomial over
K. Suppose that f has exactly two real roots. Show that the Galois group of f is either Sy or of order 8.

Note that char(K) = 0 so each finite field extension is separable. Let r, s € R be the two distinct real roots of f.
Let a € C be a complex root of f so @ is the final root of f. Since f is irreducible, [K[r] : K| = 4. Case 1: Assume
s € K[r]. Then f = (x —r)(x — s)h for h € (F[r])[z] and deg(h) = 2. Note that K[r] = R but a ¢ R. Thus the
quadratic h is irreducible over K[r]. We conclude [K|[r,«] : K] = [K[r,«a] : K[r]][K][r] : K] = 8 where K[r,a] is
the splitting field of f over K. Then K|[r,a]/K is Galois and |Gal(f)| = 8.

Case 2: Assume s ¢ K|[r]. Then f = (z —r)g with g € (K[r])[z] and deg(g) = 3. Since K[r] € R and s ¢ K[r],
the cubic g is irreducible over K[r]. Then [K|[r,s] : K] = 12 and f = (z — r)(x — s)h for h € (K|[r, s])[z] with
deg(h) = 2. Since K[r, s] € R, the quadratic h will be irreducible over K|r,s]. We have K|[r, s, ] is the splitting
field of f over K so K|r,s,a]/K is Galois. Additionally, [K[r,s,a] : K] = |Gal(K|[r,s,a]/K)| = 24. The Galois
group defines a group action on the set of four roots of f. Therefore, we have an injective group homomorphism
¢ : Gal(K|r,s,a]/K) — Ss. By an order argument, ¢ is surjective and Gal(K|[r,s,«]/K) ~ Sy.



Spring 2019 Problem 5. Let ®,, denote the nth cyclotomic polynomial in Z[X] and let a be a positive integer
and p a (positive) prime not dividing n. Prove that if p|®,(a) in Z, then p =1 mod n.

We have ®,,(a) divides a™ — 1 so p divides a™ — 1. With ged(a,a™ — 1) = 1, we conclude that p does not divide
a. In particular, the equivalence class of a is a unit in (Z/pZ)*. Since ¢ =1 (mod p), we know that the order of
a in (Z/pZ)* divides n. If the order of a is n, then n divides [(Z/pZ)*| = p — 1 as desired.

Assume now that the order of a is strictly less than n. Then p divides a* — 1, and there is some divisor d of k
for which p divides ®4(a). Since ®4(a)®P,(a) divides ™ — 1, a is a double root of ™ — 1. However, the polynomial
z™ — 1 has formal derivative nz"~!. Since p does not divide n, we conclude that 2" — 1 is separable over F,, a
contradiction.
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Definition 1. A left R-module M is simple if M # 0 and M has no non-trivial submodules. M is simple if and
only if M ~ R/I as R-modules for some maximal left ideal I.

Lemma (Schur). Let f: M — N be an R-module homomorphism of simple R-modules. Then f = 0 or f is an
isomorphism. As a corollary, if M is a simple R-module, then Endg(M) is a division ring.

Definition 2. A left R-module M is semisimple if there is a family of simple submodules M; such that
M = ®;M;.
A semisimple ring R is semisimple as a left R-module. Equivalently, R will be semisimple as a right R-module.

Remark 1. A simple ring is not necessarily semisimple. Simple rings are those without two-sided ideals while
semisimplicity is a module concept.

Theorem. Let R be a ring. The following are equivalent:

(a) R is semisimple;

(b) every left R-module is semisimple;

(c) every left R-module is projective;

(d) every left R-module is injective;

(e) every short exact sequence of left R-modules is split.

Theorem (Artin-Wedderburn). A ring R is semisimple if and only if
R~ Ml(Dl) X e X Mk(Dk)
for some division rings D1, ..., Dj.

Definition 3. The Jacobson radical J(R) of a ring is the two-sided ideal that is the intersection of all left maximal
ideals of R. An element z € R is in J(R) if and only if 1 — azb is in R* for all a,b € R. Equivalently, the Jacobson
radical is the set of elements r € R such that rM = 0 for M a simple left R-module.

Theorem. A ring R is semisimple if and only if R is Artinian and J(R) = 0.
Theorem. A ring is simple and Artinian if and only if R = M,, (D) for some division ring D.

Fall 2014 Problem 5. Let R be a commutative algebra over Q of finite dimension n. Let p : R — M, (Q)
be the regular representation, and define Tr : R — Q by the matrix trace of p. If the pairing (z,y) = Tr(zy) is
non-degenerate on R, prove that R is semi-simple.



We will show that a non-degenerate trace implies that R has no non-trivial nilpotent elements. Let r € R be
nilpotent with 7% = 0. Then p(r) is a matrix such that p(r*¥) = p(r)¥ = 0. Then the minimal polynomial of p(r)
has the form X™ for some m. We conclude that Tr(r) = 0 since Tr(r) appears as a non-leading coefficient in the
minimal polynomial. In particular, rz is nilpotent for all z € R since R is commutative. Thus Tr(rz) = 0 for all
x € R. If (z,y) is non-degenerate, then R has no non-trivial nilpotent elements. In other words, the nilradical of
R is trivial.

Every ideal of R is closed under multiplication by R, which means each ideal is a Q-subspace of a finite-
dimensional vector space. Thus R is Artinian by a dimension argument for a descending chain of ideals. In an
Artinian commutative ring, each prime is maximal so the Jacobson radical and nilradical are equal. Since the
nilradical is trivial, the Jacobson radical of A is trivial. We now prove that an Artinian ring with trivial Jacobson
radical is semi-simple. A Artinian implies there are finitely many maximal ideal {m;} for 1 < ¢ < ¢. Thus
mlemi = 0. By the Chinese Remainder Theorem,

A~A/ Al m ~ @ Ajm,.

Each A/m; is a simple R-module so R is a semi-simple R-module. This shows R is a semi-simple ring.

Fall 2017 Problem 3. Let k be a field and A a finite-dimensional k-algebra. Denote by J(A) the Jacobson
radical of A. Let t : A — k be a morphism of k-vector spaces such that ¢(ab) = t(ba) for all a,b € A. Assume ker(t)
contains no non-zero left ideal. Let M be the set of elements a in A such that ¢(za) = 0 for all x € J(A). Show
that M is the largest semi-simple left A-submodule of A.

We want to show that M is the sum of all of the simple modules of A. Let N be a simple left A-module. Then
J(A)N = 0 by the definition of the Jacobson radical as the annihilator of all simple left A-modules. Since t(xn) = 0
for n€ N and all € J(A), we have N € M. Thus M contains the sum of all the simple left A-submodules of A.

Take a descending chain of left ideals of A. Each left ideal is a finite-dimensional k-vector space. Thus the
chain must terminate, and A is left Artinian as a left A-module. The same argument works for right ideals so A
is Artinian as a ring. Consequently, A/J(A) is an Artinian ring. Since J(A) is a two-sided ideal of A, we have
J(A)M is a left ideal contained in ker(t). We assume ker(t) contains no non-zero left ideal so J(A)M = 0. Thus M
has the structure of a left A/J(A)-module. Now A/J(A) is Artinian and has trivial Jacobson radical so A/J(A) is
a semisimple ring. We conclude that M is a semisimple left A/J(A)-module. In other words, M is the direct sum
of simple left A/J(A)-modules. These simple A/J(A)-modules are simple as A-modules so M is a semisimple left
A-module. Since M contains the sum of all simple left A-modules, M is the largest semisimple left A-submodule
of A.

Fall 2018 Problem 12. Let F be a finite field and K c F the subfield of an algebraic closure generated by all
roots of unity. Find all simple finite dimensional K-algebras.

Let L/F be an algebraic extension. Then for each a € L, we have a finite extension F[a]/F. Then F[«] is the
finite field of order ¢ for ¢ some power of a prime. Since (F[a])* is cyclic of order ¢ — 1, K[a] is a subfield of K
for each a € L so L is a subfield of K. We conclude that K is the algebraic closure of F'.

By Artin-Wedderburn, a simple finite dimensional K-algebra A is a matrix algebras with coefficients in a division
ring D over K. However, if dimg (D) is finite, we must have D ¢ K by K algebraically closed. Thus A ~ M, (K)
for some integer n > 1.

Spring 2019 Problem 7. Let F be a field and let R be the ring of 3 x 3 matrices over F' with (3,1) and (3,2)

entry equal to 0. Thus,
F F F
R=|F F F
0 0 F

(a) Determine the Jacobson radical J of R.

Left multiplication by elements of R can perform the row operations: multiplication of a row by a constant,
switching rows 1 and 2, and adding a multiple of any row to rows 1 or 2. The elementary matrices except
i =1,2, j = 3 do not satisfy (I —rE;;) € R* for all r € R. The elementary matrices Eq3 and Es3 do satisfy
(I —rE;;) € R* for all r € R and, thus, generate the Jacobson radical J.



(b) Is J a minimal left (respectively right) minimal ideal?

J is a minimal left ideal since the possible row operations can produce any matrix in J from a non-zero entry
in the 13 or 23 position. J is similarly a minimal right ideal by looking instead at column operations.

Fall 2019 Problem 4. Find all isomorphism classes of simple (i.e., irreducible) left modules over the ring M,,(Z)
of n by n matrices with Z-entries with n > 1.

Every simple module is M,,(Z)/I for a left maximal ideal I of M,,(Z). Left ideals in M, (Z) are closed under row
operations. The Fuclidean algorithm in Z allows us to reduce each column to elements that are multiples of the
greatest common divisor. The maximal ideals of Z are (p) for p € Z prime. Thus the left maximal ideals of M,,(Z)
should be matrices with any integers in the entries of two columns and the third column entries are multiples of p
for a prime p € Z.

Fall 2020 Problem 3. A ring R (commutative or non-commutative) is called a domain if ab = 0 in R implies
a =0 or b= 0. Suppose that R is a domain such that M, (R), the ring of n x n matrices over R, is a semisimple
ring. Prove that R is a division ring.

Prove that M, (R) is right Artinian implies R is right Artinian. (In fact, it is true that M, (R) is right Artinian
if and only if R is right Artinian.) Then R is an Artinian domain and, thus, a division ring by looking at the
multiplication by r on the left module map.

Take a descending chain of left ideals I in R. Then the corresponding descending chain of left ideals in
M, (R) terminates in finitely many steps. Then the scalar matrix for r € I, ;1 can be written as an M, (R)-linear
combination of elements of I,,,. By looking at the diagonal entries of the linear combination, the element r € I, 11
can be written as an R-linear combination of elements of I,,.
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Definition 1. Let F be a field. An F-algebra A is a ring that has the structure of an F-vector space. A central
F-algebra A is one for which Z(A) = F. A simple F-algebra A is one that does not have non-trivial two-sided
ideals. By Artin Wedderburn, a simple F-algebra is isomorphic to M, (D) for D a division F-algebra.

Proposition. Let A and B be two simple F-algebras. If A is central, then A ® B is simple F-algebra. As a
result, if A and B are central simple F-algebras, then A ®r B is a central simple F-algebra.

Theorem (Noether-Skolem). Let A be a finite-dimensional central simple algebra over F' and let S,T < A be
simple subalgebras. Let f : S — T be an F-algebra isomorphism. Then there exists a € A* such that f(s) = asa™!
for all se S.

Definition 2. The centralizer of a subalgebra S c A is
Ca(S)={ae A:as=saforall se S}
Theorem (Double centralizer). Let A be a central simple algebra over F and let S < A be a simple subalgebra.
(a) CA(S) is simple with Z(C4(S)) =5 n Ca(S) = Z(S),
(b) (dim(S))(dim(C4(5))) = dim(A),
(c) Ca(Ca(S)) =S5.
Corollary. Let S be a central simple subalgebra of a central simple algebra A. Then A = S ®p C4(5).
Proposition. If A4 is a central simple algebra over F, then dimr A = n? for some n.

Fall 2014 Problem 4. Let D be a 9-dimensional central division algebra over Q and K < D be a field
extension of Q of degree greater than 1. Show that K ®q K is not a field and deduce that D ®g K is no longer a
division algebra.

Note K is a finite extension of Q and Q is perfect. By the Primitive Element Theorem, K ~ Q[x]/(f) for some
irreducible polynomial f € Q[z]. Since f is no longer irreducible in K, (f) is neither a maximal nor a prime ideal
of K[x]. We conclude K ®g K ~ K[x]/(f) is not a field and, further, not a domain. Alternatively, we can factor
f=@—a)(z—p3)foro,f e K, and K®q K ~ K[z]/(f) ~ K[z]/(z —a) x K[z]/(x— ) by the Chinese Remainder
Theorem. (Note that the extension is separable so o and § are distinct.) Therefore, K ®q K is not even a domain.

Now K ®q K is a commutative subring of D ®g K that is not a domain. We conclude that D ®g K cannot be
a division algebra.

Spring 2018 Problem 4. Let p be a prime number, and let D be a central simple division algebra of dimension
p? over a field k. Pick a € D not in the center and write K for the subfield of D generated by «. Prove that
D ®y K ~ M,(K) (the p x p matrix algebra with entries in K).

Note that Z(D ®x K) = Z(D) ® Z(K) = k®; K = K. The tensor product of a central simple algebra and a
simple algebra is simple. Therefore, D ®; K is a central simple K-algebra. By Artin-Wedderburn, D ®;, K is the
product of matrix algebras over division rings. However, dimg (D @ K) = dimy(D) = p? so either D ®, K is a
division algebra or D ®; K ~ M,(K). Now K ®; K is a subring of D ®; K. We will show next that K ®; K has
zero divisors so D ®; K is not a division ring.

Let m, € k[z] be the minimal polynomial of « over k. Then K ®i K = k[z]/(ms) ®r K = K[z]/(m4). Since
K contains a root of mg, me = []i-; g; for some irreducible polynomials g; € K[z]. Therefore, K[z]/(ms) =
Klz)/(IT", 9;) ~ T1i~, K[z]/(g:) by the Chinese Remainder Theorem. It is clear that [[", K[z]/(g;) has zero
divisors for m > 2.



Spring 2020 Problem 5. If K # Q appears as a subfield (sharing the identity) of some central simple algebra
over Q of Q-dimension 9, determine (isomorphism classes of) the groups appearing as the Galois group of the Galois
closure of K over Q.

A central simple algebra A is not a field since Z(A) = Q. Further K # Q so dimg(K) = 3. The field Q is perfect
so K is a separable field extension of Q. We can write K = Q(«) by Primitive Element Theorem with m,, of degree
3. Let L be the normal closure of K over Q. We can embed Gal(L/Q) in S3 which implies Gal(L/Q) is isomorphic
to Z/37 or Ss.

The action on K via left multiplication by « is a Q-linear ring homomorphism. Since K is a field, the kernel
of the map is trivial. Thus the map is an isomorphism between K and a subfield of M3(Q). We have shown that
any degree 3 field extension K of Q is a subfield of M3(Q). The field extension K = Q(&7 + &7 1) is cyclic Galois
of degree 3. The polynomial 2® — 2 is irreducible over Q by Eisenstein’s criterion. Let K = Q[z]/(z® — 2) so
Gal(L/Q) ~ Ss. Thus Z/3Z and Ss are the possibilities for the Galois group of the normal closure of K over Q.

Spring 2018 Problem 8. Let F be a field that contains the real numbers R as a subfield. Show that the tensor
product F'®g C is either a field or isomorphic to the product of two copies of F', F x F'.

We note that C ~ R[z]/(2z? +1) so F®rC ~ FRrR[z]/(2?+1) ~ F[z]/(z*+1). If 22 + 1 is irreducible in F[z],
then F[z]/(x? + 1) is a field. If 22 + 1 has a root in F, then F[z]/(2? + 1) ~ Flz]/(z —a) x F[z]/(x —B) ~ F x F
by the Chinese Remainder Theorem. Therefore, F ®g C is either a field or isomorphic to F' x F.

Spring 2020 Problem 4. Compute the dimension of the tensor products of two algebras Q[v/2] ®z Q[+v/2] over
Q and Q[v2] ®z R over R. Is R ®z R finite dimensional over R?

By the Chinese Remainder Theorem,

Q[V2] ®z R ~ R[z]/(2* - 2)
~ R[z]/(x — V2) x R[z]/(z + V2)
~ R x R.

Let {p;} be the prime integers in increasing order. We want to show that the field extension Q[,/p1, ..., /Pr+1]

over Q[\/p1,.--,+/Pk] is degree 2. Then Q[\/p1,--.,+/Pk;---] is an infinite degree field extension over Q that
is a subalgebra of R. Then R ®; R will be infinite dimensional over R by applying the above argument to

Q[\/P1s- -1 1/Phs- - 1@z R.



